Analysis of an= n1/2: Cauchy Criterion Examined

  • Thread starter Thread starter Kudaros
  • Start date Start date
  • Tags Tags
    Analysis Cauchy
Kudaros
Messages
18
Reaction score
0

Homework Statement



Define the Sequence an= n1/2 where n is a natural number.

Show that |an+1-an| -> 0 but an is not a cauchy sequence

Homework Equations


The Attempt at a Solution



(Ignore this paragraph)Well, unfortunately I am stuck on the very first part. How exactly do I evaluate the limit as n -> infinity of |(n+1)^(1/2) - n^(1/2)| ? any hint at a trick would be most welcome (unless of course I am not seeing something that is obvious).

As for the rest, I need to show an is not a Cauchy sequence. The definition of a Cauchy sequence uses two sequences with different subscripts, m and n. In this case, can I take n+1 to be m and keep n as itself?

I think I need to show that the distance between the two sequences, an+1 and an is not decreasing as n becomes large.

edit: found limit.

Also, re-reading the question I see a flaw in my above statement. I just need to show that for any given m and n, as I vary them independently, they do not meet the cauchy criterion. The problem itself states that looking only at the n+1 term appears to meet the criterion, but in fact does not.

Confirm or deny?
 
Last edited:
Physics news on Phys.org
To evaluate the limit multiply by (sqrt(n+1)+sqrt(n))/(sqrt(n+1)+sqrt(n)) and simplify. And to show it's not Cauchy, no, don't take m=n+1. You're going to show that goes to zero. Take m MUCH bigger than n. Say 4 times n?
 
Thanks, now I understand that definition/concept. Incidentally, I also understand the contractive sequence concept now.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top