Analysis: Sequence convergence with Square Roots

clifsportland

Homework Statement


Given Lim Cn=c, Prove that Lim\sqrt{Cn}=\sqrt{c}


Homework Equations


We are working from the formal definition: for all \epsilon, there exists an index N such that For all n>=N, |Cn-c|<\epsilon


The Attempt at a Solution


We as a group have attempted this several times from several directions, too many to post here. we've been working for over an hour with no results. Please HElp!
 
Physics news on Phys.org
So you can't use any limit theorems?
 
Let \epsilon_1&gt;0\Rightarrow \epsilon_1\,(\epsilon_1+2\sqrt{c})&gt;0 then

\exists \,N:|C_n-c|&lt;\epsilon_1\,(\epsilon_1+2\sqrt{c}), \forall n\geq N

Thus \forall\, n\geq N

C_n-c&lt;\epsilon_1\,(\epsilon_1+2\sqrt{c}) \Rightarrow C_n&lt;\epsilon_1^2+2\,\epsilon_1\,\sqrt{c}+c\Rightarrow C_n&lt;(\epsilon_1+\sqrt{c})^2\Rightarrow \sqrt{C_n}&lt;\epsilon_1+\sqrt{c}

Now choose \epsilon=max\Big(\epsilon_1\,(\epsilon_1+2\sqrt{c}),\epsilon_1+2\sqrt{c}\Big) and apply the triangle inequality at |\sqrt{C_n}-\sqrt{c}|.
 
|c_n -c | = | \sqrt{c_n} - \sqrt{c}| |\sqrt{c_n} +\sqrt{c}| [/tex] should work i think . you can prove |\sqrt{c_n} +\sqrt{c}|is bounded using the definition you gave in 2 and choose a new epsilon<br /> Of course i am assuming we are talking about a nonegative sequence
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top