Calculus Analysis with or without set-theoretic topology?

  • Thread starter Thread starter inthenickoftime
  • Start date Start date
  • Tags Tags
    Analysis Topology
AI Thread Summary
A first course in analysis should ideally balance the teaching of inequalities with core concepts of set-theoretic topology, as both are essential for a rigorous understanding of calculus. While some argue that topology can be deferred, it's important to recognize that foundational concepts in topology enhance comprehension of advanced topics like the calculus of variations. The necessity of topology depends on the depth of understanding desired, particularly in contexts involving infinite-dimensional spaces. Many successful applications of calculus of variations in physics do not require an in-depth focus on topology, yet a solid grasp of topological principles is invaluable. Ultimately, a well-rounded introduction to analysis that incorporates both aspects is recommended for a comprehensive mathematical education.
inthenickoftime
Messages
17
Reaction score
2
Do you think a first course in analysis should focus entirely on inequalities and leave set-theoretic topology for another occasion? Should this depend on whether or not the student had a first rigorous calculus course first? If I'm not mistaken, Victor Bryant (Yet Another Introduction to Analysis) and Arthur Mattuck (Introduction to Analysis) authored analysis books in the language of inequalities. Has anyone had previous experience with these two? Did it alleviate topological proofs in later courses? Is topology even required for the level I'm aiming at? Let's say my main concern is grasping the calculus of variations (much needed in mechanics). At what point do you absolutely need to incorporate topology in your analysis?

edit: I'd like to add that David Bressoud's A Radical Approach to Analysis also does this.
 
Last edited:
Physics news on Phys.org
inthenickoftime said:
Do you think a first course in analysis should focus entirely on inequalities and leave set-theoretic topology for another occasion?
I think that a first course should do both: teach basic techniques in estimation, but also introduce core concepts of set-theoretic topology. At a more advanced level, these often go hand in hand.
inthenickoftime said:
Should this depend on whether or not the student had a first rigorous calculus course first?
No, as part of the purpose of a first course in analysis is to make calculus rigorous.
inthenickoftime said:
Victor Bryant (Yet Another Introduction to Analysis) and Arthur Mattuck (Introduction to Analysis) authored analysis books in the language of inequalities. Has anyone had previous experience with these two?
No, sorry, I have no experience with those texts.
inthenickoftime said:
Is topology even required for the level I'm aiming at? Let's say my main concern is grasping the calculus of variations (much needed in mechanics). At what point do you absolutely need to incorporate topology in your analysis?
It really depends on what level of understanding you are striving for, and what you aim to do with the theory that you will learn. For example, a lemma by Weierstrass says that a continuous real-valued function (i.e. a continuous functional) on a compact topological space assumes its maximum and minimum. Now, calculus of variations is typically concerned with the case that the domain of the functional is a subset of an infinite dimensional topological vector space. In this setting, it is typically not easy for that domain to be compact, and both compactness and continuity depend very much on the topology in question.

I'm quite sure there are lots of physicists that use calculus of variations successfully (for example in mechanics) without worrying about topological issues. On the other hand, it are precisely those issues that I find more interesting myself.

So, my advice would be to get a rigorous introduction to analysis that offers a broad perspective and does not limit itself to one very specific approach. You can always study such approaches in tandem or (maybe better) after having finished your introduction.
 
  • Like
Likes inthenickoftime
I am not sure of the answer to your question, but I have some experience. In my own math career I have found that basic topology is probably the most useful and fundamental language and knowledge there is, absolutely valuable to almost everyone, certainly to me. The introduction to John Kelley's General Topology said he was dissuaded with difficulty by friends from titling his book "What every young analyst should know". So in my opinion you will be glad for everything you learn from topology.
 
  • Like
Likes vanhees71 and inthenickoftime
Maybe I'm biased, but one cannot know too much topology. It is such a powerful tool. I use it all the time.
 
  • Like
Likes vanhees71
Topology is beautiful and useful, but for an introduction to analysis, I think it is best to find a balance between "soft" and "hard" analysis.
 
  • Like
Likes inthenickoftime
S.G. Janssens said:
Topology is beautiful and useful, but for an introduction to analysis, I think it is best to find a balance between "soft" and "hard" analysis.
I had to ask because topology and sets are relatively new. If I'm correct, people were doing rigorous mathematics long before these two branches were introduced (I can think of Fourier and Cauchy). The addition of new notions (propositional logic, sets, topology, etc.) to an already complex subject (calculus) when others have done without, and, successfully at that, made me wonder if the actual math curriculum isn't doing its students some disservice by obfuscating elements of calculus with the introduction of other topics prematurely. I'm not arguing against their use, but question their use within a first rigorous course on calculus.
 
The book is fascinating. If your education includes a typical math degree curriculum, with Lebesgue integration, functional analysis, etc, it teaches QFT with only a passing acquaintance of ordinary QM you would get at HS. However, I would read Lenny Susskind's book on QM first. Purchased a copy straight away, but it will not arrive until the end of December; however, Scribd has a PDF I am now studying. The first part introduces distribution theory (and other related concepts), which...
I've gone through the Standard turbulence textbooks such as Pope's Turbulent Flows and Wilcox' Turbulent modelling for CFD which mostly Covers RANS and the closure models. I want to jump more into DNS but most of the work i've been able to come across is too "practical" and not much explanation of the theory behind it. I wonder if there is a book that takes a theoretical approach to Turbulence starting from the full Navier Stokes Equations and developing from there, instead of jumping from...

Similar threads

Replies
16
Views
10K
Replies
4
Views
2K
Replies
4
Views
4K
Replies
12
Views
3K
Replies
5
Views
4K
Replies
7
Views
4K
Back
Top