Analytically Continue RZF Using Gamma Function: Step By Step Guide

  • Thread starter Thread starter camilus
  • Start date Start date
  • Tags Tags
    Theory
camilus
Messages
146
Reaction score
0
theory of Riemann zeta function question

analytically continuing the Riemann zeta function (RZF) using the gamma function leads to this identify:

n^{-s} \pi^{-s \over 2} \Gamma ({s \over 2}) = \int_0^{\infty} e^{-n^2 \pi x} x^{{s \over 2}-1} dx ________(1)

and from that we can build a similar expression incorporating the RZF:

\pi^{-s \over 2} \Gamma ({s \over 2}) \zeta (s) = \int_0^{\infty} \psi (x) x^{{s \over 2}-1} dx ________(2)

where

\psi (x) = \sum_{n=1}^{\infty} e^{-n^2 \pi x}

is the Jacobi theta function.

Then Riemann proceeds to use the functional equation for the theta function:

2\psi (x) +1 = x^{-1 \over 2} (2 \psi ({1 \over x})+1)

to equate (2) with:

\pi^{-s \over 2} \Gamma ({s \over 2}) \zeta (s) = \int_1^{\infty} \psi (x) x^{{s \over 2}-1} dx + \int_1^{\infty} \psi ({1 \over x}) x^{-1 \over 2} x^{{s \over 2}-1} dx+{1 \over 2} \int_0^{1} (x^{-1 \over 2} x^{{s \over 2}-1} - x^{{s \over 2}-1}) dx

This is the step I am stuck on, I am trying to figure out what he did to get that last equation. Any help would be greatly appreciated.
 
Last edited:
Physics news on Phys.org
I found an error, and the reason why I've been stuck. There is a typo in my book, maybe I should contact the publisher. I had to check Riemann's original handwritten manuscript in german to see that the second integral is from 0 to 1.

the second integral is not

\int_1^{\infty} \psi ({1 \over x}) x^{-1 \over 2} x^{{s \over 2}-1} dx

but

\int_0^1 \psi ({1 \over x}) x^{-1 \over 2} x^{{s \over 2}-1} dx
 
problem resolved. I verified and indeed

\pi^{-s \over 2} \Gamma ({s \over 2}) \zeta (s) = \int_1^{\infty} \psi (x) x^{{s \over 2}-1} dx + \int_0^1 \psi ({1 \over x}) x^{-1 \over 2} x^{{s \over 2}-1} dx+{1 \over 2} \int_0^{1} (x^{-1 \over 2} x^{{s \over 2}-1} - x^{{s \over 2}-1} ) dx

=>

\zeta (s) = {\pi^{s \over 2} \over \Gamma (\frac{s}{2})} \left( \int_1^{\infty} \psi (x) x^{{s \over 2}-1} dx + \int_0^1 \psi ({1 \over x}) x^{-1 \over 2} x^{{s \over 2}-1} dx+{1 \over 2} \int_0^{1} (x^{-1 \over 2} x^{{s \over 2}-1} - x^{{s \over 2}-1} ) dx \right)

=>

\zeta (s) = {\pi^{s \over 2} \over \Gamma (\frac{s}{2})} \left( {1 \over s(s-1)} + \int_1^\infty \psi(x) \left( x^{{s \over 2}-1} + x^{-{s+1 \over 2}} \right) dx \right)
 
The error I am talking about can be found in the middle of page 3 not counting the cover page.
http://www.claymath.org/millennium/Riemann_Hypothesis/1859_manuscript/EZeta.pdf


Riemann's manuscript, bottom of page 2, where you can see the real version.
http://www.claymath.org/millennium/Riemann_Hypothesis/1859_manuscript/riemann1859.pdf
 
Last edited by a moderator:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top