stunner5000pt
- 1,443
- 4
Consider a system of two particles of (fixed) masses m1 and m2 with position vectors r1 and r2 respectively (relative to a fixed origin of coordinates)
a) Expres the total angular momentum L = r1 x mv1 + r2 x mv2 of this two body system in terms of hte cnetre of mass vector R amd the relative coordinate vectpr r = r1 - r2 Interpret your reult
wouldnt it be something like this
r_{1} = R + \frac{m_{2}}{M} r
r_{2} = R + \frac{m_{1}}{M} r
then \dot{r_{1}} = \dot{R} + \frac{m_{2}}{M} \dot{r}
\dot{r_{2}} = \dot{R} + \frac{m_{1}}{M} \dot{r}
then L = (R + \frac{m_{2}}{M} r) \times m \dot{r_{1}} = \dot{R} + \frac{m_{2}}{M} \dot{r} + (R + \frac{m_{1}}{M} r) \times m \dot{r_{2}} = \dot{R} + \frac{m_{1}}{M} \dot{r}
dont think i can go much past this point ... can i ?
please help!
a) Expres the total angular momentum L = r1 x mv1 + r2 x mv2 of this two body system in terms of hte cnetre of mass vector R amd the relative coordinate vectpr r = r1 - r2 Interpret your reult
wouldnt it be something like this
r_{1} = R + \frac{m_{2}}{M} r
r_{2} = R + \frac{m_{1}}{M} r
then \dot{r_{1}} = \dot{R} + \frac{m_{2}}{M} \dot{r}
\dot{r_{2}} = \dot{R} + \frac{m_{1}}{M} \dot{r}
then L = (R + \frac{m_{2}}{M} r) \times m \dot{r_{1}} = \dot{R} + \frac{m_{2}}{M} \dot{r} + (R + \frac{m_{1}}{M} r) \times m \dot{r_{2}} = \dot{R} + \frac{m_{1}}{M} \dot{r}
dont think i can go much past this point ... can i ?
please help!