xyver
- 6
- 0
Homework Statement
I do not understand equal signs 2 and 3 the following Angular momentum operator identity:
Homework Equations
\hat{J}^2 = \hat{J}_1^2+\hat{J}_2^2 +\hat{J}_3^2
<br /> <br /> = \left(\hat{J}_1 +i\hat{J}_2 \right)\left(\hat{J}_1 -i\hat{J}_2 \right) +\hat{J}_3^2 + i \left[ \hat{J}_1, \hat{J}_2 \right]
<br /> = \hat{J}_+\hat{J}_- + \hat{J}_3^2 - \hbar \cdot \hat{J}_3
<br /> <br /> <br /> = \hat{J}_-\hat{J}_++ \hat{J}_3^2 + \hbar \cdot \hat{J}_3
\hat{J}_+ = \hat{J}_1 + i\hat{J}_2
\hat{J}_- = \hat{J}_1 - i\hat{J}_2
[\hat{J}_i,\hat{J}_j] = i\hbar\epsilon_{ijk}\hat{J}_k
The Attempt at a Solution
\hat{J}^2= \hat{J}_1^2+\hat{J}_2^2 +\hat{J}_3^2
= \left(\hat{J}_+ -i \hat{J}_2 \right)^2 \left( \frac{\hat{J}_+ -i \hat{J}_1 }{i}\right)^2 +\hat{J}_3^2
= \hat{J}_+^2 -i\hat{J}_+ \hat{J}_2 -i\hat{J}_2 \hat{J}_+ +i^2 \hat{J}_2^2 +\hat{J}_3^2 + \frac{\hat{J}_+^2 -i\hat{J}_+ \hat{J}_1 -i\hat{J}_1 \hat{J}_+ + \hat{J}_1^2 } {i^2} +\hat{J}_3^2
= \hat{J}_+^2 -i\hat{J}_+ \hat{J}_2 -i\hat{J}_2 \hat{J}_+ - \hat{J}_2^2 - \hat{J}_+^2 +\hat{J}_+ \hat{J}_1 +\hat{J}_1 \hat{J}_+ - \hat{J}_1^2 +\hat{J}_3^2
= -i\hat{J}_+ \hat{J}_2 -i\hat{J}_2 \hat{J}_+ - \hat{J}_2^2 +\hat{J}_+ \hat{J}_1 +\hat{J}_1 \hat{J}_+ - \hat{J}_1^2 +\hat{J}_3^2
Unfortunately, this does not lead to the right way. Who can help?