decerto
- 84
- 2
Homework Statement
Given that [A_i,J_j]=i\hbar\epsilon_{ijk}Ak where A_i is not invariant under rotation
Show that [J^2,Ai]=-2i\hbar\epsilon_{ijk}J_jAk-2\hbar^2A_i
Homework Equations
[AB,C]=A[B,C]+[A,C]B
[A,B]=-[B,A]
The Attempt at a Solution
[J^2,Ai]=[J_x^2,Ai]+[J_y^2,Ai]+[J_z^2,Ai]
=J_x[J_x,Ai]+[J_x,Ai]J_x+J_y[J_y,Ai]+[J_y,Ai]J_y+J_z[J_z,Ai]+[J_z,Ai]J_z
=-J_x\epsilon_{ixk}Ak-\epsilon_{ixk}AkJ_x-J_y\epsilon_{iyk}Ak-\epsilon_{iyk}AkJ_y-J_z\epsilon_{izk}Ak-\epsilon_{izk}AkJ_z
Not sure where to go from here