Another limit with two variables

  • Thread starter Thread starter oahsen
  • Start date Start date
  • Tags Tags
    Limit Variables
oahsen
Messages
58
Reaction score
0
how can I show that
lim of (x^3*y)/(x^5+2*y^3) when (x,y) goes to (0,0) is 0.
I tried to solve with epsilon-delta method and with sandwich method. however, all of my attempts resulted withous sucess? Which method should I use and how should ı start?
 
Physics news on Phys.org
The limit is not 0. It does not exist. Contrast the parameterizations y=x^2 and y=0.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top