Antiderivative of a rational function

nuuskur
Science Advisor
Messages
926
Reaction score
1,221

Homework Statement


Consider the integral:
\int\frac{2x^3 -4x^2 +8x +7}{(x-1)^2 (x^2 +4x +8)}{\rm{d}}x

Homework Equations

The Attempt at a Solution


The degree of the denominator is 4 and the numerator's is 3, hence I thought I would try partial fractions:
\frac{A}{x-1} +\frac{B}{(x-1)^2} +\frac{C}{x^2 +4x +8} = \frac{2x^3 -4x^2 +8x +7}{(x-1)^2 (x^2 +4x +8)}multiplying both sides by the denominator on the right side we would have:
A(x-1)(x^2 +4x +8) +B(x^2 +4x +8) +C(x-1)^2 = 2x^3 -4x^2 +8x +7\\Ax^3 +(3A +B +C)x^2 +(4A +4B -2C)x -(8A -8B -C) = 2x^3 -4x^2 +8x +7
So I should be able to conclude that A = 2, however, the problem is that on one hand I get that 3B = -10 and on the other hand, 10B = 23. Have I made a mistake in the calculations? Is any such rational function divisible [not sure if that's the correct word] into partial fractions?
Is there any other method for tackling such a problem?

Thank you in advance.
 
Last edited:
Physics news on Phys.org
nuuskur said:

Homework Statement


Consider the integral:
\int\frac{2x^3 -4x^2 +8x +7}{(x-1)^2 (x^2 +4x +8)}{\rm{d}}x

Homework Equations

The Attempt at a Solution


The degree of the denominator is 4 and the numerator's is 3, hence I thought I would try partial fractions:
\frac{A}{x-1} +\frac{B}{(x-1)^2} +\frac{C}{x^2 +4x +8} = \frac{2x^3 -4x^2 +8x +7}{(x-1)^2 (x^2 +4x +8)}multiplying both sides by the denominator on the right side we would have:
A(x-1)(x^2 +4x +8) +B(x^2 +4x +8) +C(x-1)^2 = 2x^3 -4x^2 +8x +7\\Ax^3 +(3A +B +C)x^2 +(4A +4B -2C)x -(8A -8B -C) = 2x^3 -4x^2 +8x +7
So I should be able to conclude that A = 2, however, the problem is that on one hand I get that 3B = -10 and on the other hand, 10B = 23. Have I made a mistake in the calculations? Is any such rational function divisible [not sure if that's the correct word] into partial fractions?
Is there any other method for tackling such a problem?

Thank you in advance.
The last partial fraction should contain an additional first-order term in the numerator: \frac{A}{x-1} +\frac{B}{(x-1)^2} +\frac{Cx+D}{x^2 +4x +8} = \frac{2x^3 -4x^2 +8x +7}{(x-1)^2 (x^2 +4x +8)}
 
Thank you, ehild, for the correction. Could you please explain why the last partial fraction should also contain the first-order term? I do not doubt your words, I can't fully understand the concept myself.
Everything works out nicely, though.
A = 0, B = 1, C = 2 and D = -1 and the rest is trivial.
 
The denominator is of order 2, and you always need one order less in the numerator (for your (x-1)-type fractions, the A serves that purpose).

As a simple example, you cannot express ##\frac{5x+3}{x^2+4x+8}## with ##\frac{C}{x^2+4x+8}##.
 
  • Like
Likes nuuskur
nuuskur said:
Could you please explain why the last partial fraction should also contain the first-order term? I do not doubt your words, I can't fully understand the concept myself.
As you have a third-order polynomial in the numerator, it involves 4 equations when comparing its four coefficients with the expression obtained from the partial fractions. So you need 4 unknowns in general. Otherwise you might arrive at contradiction, as you experienced.
 
  • Like
Likes nuuskur
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
4
Views
1K
Replies
3
Views
1K
Replies
10
Views
2K
Replies
9
Views
2K
Replies
5
Views
1K
Replies
9
Views
3K
Replies
4
Views
1K
Replies
6
Views
2K
Replies
8
Views
2K
Back
Top