Aperiodicity of a Markov Chain

.....
Messages
53
Reaction score
0

Homework Statement



Transition matrix is

0 0 1
0 0 1
(1/3) (2/3) 0

"argue that this chain is aperiodic"


Homework Equations



definition of aperiodicity - there must exist a time n such that there is a non-zero probability of going from state i to state j for all i & j

The Attempt at a Solution



This definition doesn't seem to hold for my chain ... for example, to go from state 1 to state 2 n has to be odd.. but to go from state 1 to state 1 or 3 n has to be even..

Am I just getting this definition muddled up? Could someone elaborate on it for me? Thanks
 
Physics news on Phys.org
anyone?
 
The chain is aperiodic 1->3->2->3->1
You can get from any position to any other (it doesn't have to be in one step..)
 
Yeah, I can see it's not periodic and hence must be apeiodic, but what's going on with that definition? My understanding of it is that there has to be a special (fixed) value of n where you can go from anyone state to all the others, including back to that state... but that doesn't seem to hold here... thanks for replying
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top