I Applying Heisenberg picture to density operator

Haorong Wu
Messages
417
Reaction score
90
TL;DR Summary
How density operator evolves in the Heisenberg picture?
Suppose that a particle evolves from point A to point B. The state of the particle can be written as $$\rho=\sum \left | m\right >\rho_{mn}\left< n\right | .$$ Because the basis is evolving as the particle travels, I am considering applying the Heisenberg picture to the density operator.

Let the initial state of the particle be $$\rho_0=\sum \left | m,0\right >\rho^0_{mn}\left< n,0\right |,$$ and the selecting operator at ##z## be $$\left |n,z \right > \left <m,z \right | $$. Then the element of ##\rho## at ##z## could be extracted as $$\rho(z)_{mn}=tr(\rho_0 \left |n,z \right > \left <m,z \right |)= \sum_{m'n'}\left <m,z \right | \left | m',0\right >\rho^0_{m'n'}\left< n',0\right | \left |n,z \right > . $$

I am not sure whether this is correct or not. The density operator after all is not a state vector.
 
Physics news on Phys.org
The Hilbert space does not evolve in either the Schroedinger or Heisenberg pictures. There is no concept of evolving basis. The basis is something you are always free to choose, and is purely a matter of convenience.

The quantum state (ie, the state vector or density operator) is constant in the Heisenberg picture.
 
  • Like
Likes Demystifier
atyy said:
The Hilbert space does not evolve in either the Schroedinger or Heisenberg pictures. There is no concept of evolving basis. The basis is something you are always free to choose, and is purely a matter of convenience.

The quantum state (ie, the state vector or density operator) is constant in the Heisenberg picture.
Thanks! I will reconsider it.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...

Similar threads

Back
Top