Applying the Virial Theorem to Stellar winds

AI Thread Summary
The discussion revolves around applying the Virial Theorem to analyze an isotropic stellar wind between two spherical surfaces. The user struggles to express the gravitational potential energy, kinetic energy, and thermal energy in a time-dependent form, as they currently only have spatial dependencies. They specifically mention the need to integrate the mass density and gravitational potential but are unsure how to incorporate time into their calculations. Another participant advises posting in a homework forum and emphasizes the importance of showing one's own work rather than copying existing content. The conversation highlights the challenges of applying theoretical concepts to practical problems in astrophysics.
JimLad
Messages
2
Reaction score
0
Hello,

In the process of revising for an exam I have, I am having difficulty with this question.

"Consider an isotropic stellar wind of mass density rho, pressure p, temperature T and velocity v that has reached to a distance r=R_w from the centre of a star. The star has mass M* and radius R*. Write down the time-dependent Virial Theorem describing the wind between the spherical surfaces r=R* and r=R_w. Assume the gravitational acceleration of the material in the wind is dominated by the mass of the star (ie. you can neglect the self gravity of the gas in the wind)."



Given the full Virial theorem is: 1/2 (d^2 I / dt^2) = W + 2T + 3Pi - closedintegral(dS r p)

where W = gravitational potential energy, T = kinetic energy , Pi = thermal energy, the closed integral is to account for an outside pressure for the bit of the system we are looking at, and I is moment of inertia.

The stellar wind won't be rotating, so I = 0. So then I tried to calculate the each of the terms W, T, Pi and the surface integral term, but I havn't got them in time dependent form. An example would be W:

W=integral {dV rho r grad(Psi)}

where Psi is the gravitational potential = -GM(r)/r

So for the region R*< r < Rw, M(r) = M* since we can neglect the self gravity of the stellar wind. Hence:

grad{Psi}=GM*/r^2

W= GM* integral {dV rho / r}

Now dV=4pi r^2 dr and I could sub in for rho and integrate, but this would only be spatially dependent. How do I get the time dependent version? It's a similar case for the other terms - I have only got them in terms of spatial quantities.

Thanks for any help, hope that was clear(ish) :rolleyes:
 
Astronomy news on Phys.org
this was posted 1 year ago and still no reply! i have the exaxt same problem, how the hell do you do this?
 
anthonyhollin said:
this was posted 1 year ago and still no reply! i have the exaxt same problem, how the hell do you do this?

You need to post your question in the homework forums, and show your work. Please feel free to start a new question in the appropriate homework forum, since this is such an old thread. Oh, and please do not copy the work above-- you need to show your own work!
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...

Similar threads

Back
Top