RedSonja
- 21
- 0
Hi! How do I approximate the integral
\begin{equation} \int_0^{\infty} dt \:e^{-iA(t-B)^2} \end{equation}
with A, B real, A > 0, and B=b \cos\theta where 0 \leq \theta < 2\pi?
I guess for B\ll 0 the lower limit may be extended to - \infty to yield a full complex gaussian integral, but what about B \geq 0? And what happens for A \gg 1 and A \ll 1 respectively?
Thanks for your help!
\begin{equation} \int_0^{\infty} dt \:e^{-iA(t-B)^2} \end{equation}
with A, B real, A > 0, and B=b \cos\theta where 0 \leq \theta < 2\pi?
I guess for B\ll 0 the lower limit may be extended to - \infty to yield a full complex gaussian integral, but what about B \geq 0? And what happens for A \gg 1 and A \ll 1 respectively?
Thanks for your help!
Last edited: