What is the arc-length parameterization for a given vector function?

Sho Kano
Messages
372
Reaction score
3

Homework Statement


Find the arc-length parameterization for r(t)=\left< { e }^{ 2t },{ e }^{ -2t },2\sqrt { 2 } t \right> ,t\ge 0

Homework Equations


s(t)=\int { \left| \dot { r } (t) \right| dt }

The Attempt at a Solution


\dot { r } (t)=\left< { 2e }^{ 2t },-2{ e }^{ -2t },2\sqrt { 2 } \right> \\ \left| \dot { r } (t) \right| =\sqrt { 4{ e }^{ 4t }+4{ e }^{ -4t }+8 } \\ =2\sqrt { { e }^{ 4t }+{ e }^{ -4t }+2 } \\ =2\sqrt { { e }^{ 4t }+\frac { 1 }{ { e }^{ 4t } } +2 } \\ =2\sqrt { \frac { { e }^{ 8t }+{ 2e }^{ 4t }+1 }{ { e }^{ 4t } } } =2\sqrt { \frac { \left( { e }^{ 4t }+1 \right) \left( { e }^{ 4t }+1 \right) }{ { e }^{ 4t } } } \\ =\frac { 2 }{ { e }^{ 2t } } \left( { e }^{ 4t }+1 \right) \\ ={ 2e }^{ 2t }+{ 2e }^{ -2t }\\ s(t)-s(0)=\int _{ 0 }^{ t }{ { 2e }^{ 2t }+{ 2e }^{ -2t }dt } =0 It can't equal 0...where did I go wrong?
 
Physics news on Phys.org
It looks correct to me until the very last step where you say the integral is zero. The integral is not zero. It couldn't be, because both terms of the integrand are positive.

Note that ##2e^{2t}+2e^{-2t}## is ##2\cosh 2t##. Have a look at the graph of the cosh function and it will be immediately apparent that its definite integral from 0 to ##t## is positive.
 
  • Like
Likes Sho Kano
andrewkirk said:
It looks correct to me until the very last step where you say the integral is zero. The integral is not zero. It couldn't be, because both terms of the integrand are positive.

Note that ##2e^{2t}+2e^{-2t}## is ##2\cosh 2t##. Have a look at the graph of the cosh function and it will be immediately apparent that its definite integral from 0 to ##t## is positive.
Shoot, I made a mistake in the integration. It should be s(t)=2\int { { e }^{ 2t }+{ e }^{ -2t } } =2\left( \frac { { e }^{ 2t } }{ 2 } -\frac { { e }^{ -2t } }{ 2 } \right). That's obviously not zero.
 
What's the next step? Taking the natural log doesn't seem like it will work out, because I'd be left with { e }^{ 4t }-1 inside the log. s={ e }^{ 2t }-{ e }^{ -2t }=\frac { { e }^{ 4t }-1 }{ { e }^{ 2t } }
 
Sho Kano said:

Homework Statement


Find the arc-length parameterization for r(t)=\left< { e }^{ 2t },{ e }^{ -2t },2\sqrt { 2 } t \right> ,t\ge 0

Homework Equations


s(t)=\int { \left| \dot { r } (t) \right| dt }

The Attempt at a Solution


\dot { r } (t)=\left< { 2e }^{ 2t },-2{ e }^{ -2t },2\sqrt { 2 } \right> \\ \left| \dot { r } (t) \right| =\sqrt { 4{ e }^{ 4t }+4{ e }^{ -4t }+8 } \\ =2\sqrt { { e }^{ 4t }+{ e }^{ -4t }+2 } \\ =2\sqrt { { e }^{ 4t }+\frac { 1 }{ { e }^{ 4t } } +2 } \\ =2\sqrt { \frac { { e }^{ 8t }+{ 2e }^{ 4t }+1 }{ { e }^{ 4t } } } =2\sqrt { \frac { \left( { e }^{ 4t }+1 \right) \left( { e }^{ 4t }+1 \right) }{ { e }^{ 4t } } } \\ =\frac { 2 }{ { e }^{ 2t } } \left( { e }^{ 4t }+1 \right) \\ ={ 2e }^{ 2t }+{ 2e }^{ -2t }\\ s(t)-s(0)=\int _{ 0 }^{ t }{ { 2e }^{ 2t }+{ 2e }^{ -2t }dt } =0 It can't equal 0...where did I go wrong?

You could also put ##|\dot{r}(t)| = \sqrt{8} \sqrt{1+\cosh(4t)}##.
 
  • Like
Likes Sho Kano
OK, this problem was a pain
s={ e }^{ 2t }-{ e }^{ -2t }=2sinh(2t)\\ \frac { s }{ 2 } =sinh(2t)\\ arcsinh\left( \frac { s }{ 2 } \right) =2t=ln\left[ \frac { s }{ 2 } +\sqrt { 1+\frac { { s }^{ 2 } }{ 2 } } \right] \\ r(t(s)). So is it unsolvable without using hyperbolic functions?
 
Back
Top