Are Electronic States in a 1D Atomic Chain Eigenstates of the Hamiltonian?

squareroot
Messages
76
Reaction score
0

Homework Statement



1D atomic chain with one atom in the primitive cell and the lattice constant a. The system in described within the tight binding model and contains N-->∞ primitive cells indexed by the integer n. The electronic Hamiltonian is $$H_{0} = \sum_{n} (|n \rangle E_{at} \langle n | -|n+1 \rangle \beta \langle n| - |n \rangle \beta \langle n+1 | )$$

with Eat being the energy on one electron in the state ##|n \rangle ##at site n and## \beta >0 ## represents the energy overlap integral responsable for the interaction between first neighbors. We assume that the atomic orbitals | n \rangle are orthonormalized and neglect the overlap of atomic orbitals on different sites, thus ## \langle n|n' \rangle = \delta_{nn'} ##

First off, show that the electronic states described by :

$$ | k \rangle = \frac{1}{\sqrt{N!}}\sum_{n} e^{ikna} |n \rangle $$

are eigenstates of H0 and calculate the corresponding eigenvalues E0(k) in the first Brillouin zone

Homework Equations



above

The Attempt at a Solution


[/B]
We start by plugging H0 into the equation $$ H_{0}|k \rangle = E_{0} | k \rangle $$ and thus obtaining

$$(\sum_{n} (|n \rangle E_{at} \langle n | -|n+1 \rangle \beta \langle n| - |n \rangle \beta \langle n+1 | ))| k \rangle$$

and now replacing the form of ##|k \rangle"## one gets

$$(\sum_{n} (|n \rangle E_{at} \langle n | -|n+1 \rangle \beta \langle n| - |n \rangle \beta \langle n+1 | ))(\frac{1}{\sqrt{N!}}\sum_{n} e^{ikna} |n \rangle)$$

moving on with

$$ H_{0}|k \rangle = \frac{1}{\sqrt(N!)}\sum_{n}|n \rangle E_{at} \langle n |e^{ikna}|n \rangle - |n+1 \rangle \beta \langle n|e^{ikna}|n \rangle - |n \rangle \beta \langle n+1 | e^{ikna}|n \rangle $$

and here is where I get stuck. I don t know how to evaluate ##\langle n |e^{ikna}|n \rangle## and ## |n \rangle \beta \langle n+1 | e^{ikna}|n \rangle ##

From my intuition I think that after solving the LHS of the Schrodinger equation like I started to do above, at one point I should get that the expression above is of form ## Y|k \rangle ## with Y being a number and thus showing that the ket k is a eigenstate of H0.Thank you
 
Physics news on Phys.org
You should start by using a different summation index in the Hamiltonian and the state. You used n as the index of sites in the Hamiltonian. Use some other index, say m, when you write |k>. Then use the orthogonality of states at different sites. Also notice that a matrix element like <n| eikna |n> = eikna.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top