Are Non-linear Functions Also Homomorphisms Between Modulo Groups?

  • Thread starter Thread starter raynard
  • Start date Start date
  • Tags Tags
    Groups
raynard
Messages
9
Reaction score
0
I was wondering, if we want to define a morphism from
\mathbb{Z}2006 to, let's say \mathbb{Z}3008.
Obviously, all linear functions like $ x \rightarrow a\cdot x$ will do, but are there any other functions which can result in a homomorphism?
 
Physics news on Phys.org
Well, in the case of this cyclic group an homomorphism depends on the generating element of the group. When you have the image of your generating element you have the image of every other element of the group. The only restriction is

image_generating_element2006 = 0.

In your case the claim that all homom. will do is FALSE. Example, define

f : Z2006 -> Z3008
x |-> 20x.

Apply f to 2006 = 1 + 1 + ... + 1:

1016 = 40120 = 20 + 20 + ... + 20 [2006 times]= f(1) + f(1) + ... + f(1) [2006 times]= f(1 + 1 + ... + 1 [2006 times]) = f(2006) = f(0) = 0

CONTRADICTION
 
Last edited:
I understand my error in believing every linair function will result in a homomorphism.
However, I don't fully understand how the restriction on a generator (gen2006 = 0) can help in finding function that do result in a morphism. The only possible combination is the trivial solution x |-> x.
 
Well, sometimes a homomorphism doesn't even exists (except for the trivial homom. which maps everything to 0), for example, try to find a homom. between Z6 and Z7 (in which EVERY element is of order 7, as 7 is prime).
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top