Are these two vectors coprime?

  • Thread starter Thread starter phynewb
  • Start date Start date
  • Tags Tags
    Vectors
phynewb
Messages
13
Reaction score
0
Hi guys

I have a question about the coprime of two vectors
For two vectors (x1,x2) and (y1,y2).
Given a,b with gcf (a,b)=1 .i.e. relatively prime.
I do the linear combination of two vectors
a(x1,x2)+b(y1,y2)=n(z1,z2) with some common factor n and gcf(z1,z2)=1.
If n=1 for any a,b, two vectors are said co-prime.
I wonder if any criteria to prove two vectors are coprime.
For example, (2,3),(1,3) are not coprime b/c (2,3)+(1,3)=3(1,2).
But (7,3),(2,1) are coprime b/c a(7,3)+b(2,1)=(7a+2b,3a+b) and gcf(7a+2b,3a+b)=gcf(a,3a+b)=gcf(a,b)=1.
Also how to generalize it to vectors with n components?

Thank you
 
Mathematics news on Phys.org
I don't know if there's a name for this operation.
But I can recommend that you move the thread to the Number Theory forum, it seems to belong there more.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top