Are Unbounded Sets Always Unbounded When Combined?

  • Thread starter Thread starter peace-Econ
  • Start date Start date
peace-Econ
Messages
34
Reaction score
0
If an arbitrary unbounded set + another arbitrary unbounded set, is it also going to be an unbounded set?
 
Physics news on Phys.org
Sounds reasonable.
 
What does a set + another set mean? Do you mean the sets have real numbers and

A+B = {x+y| x ε A and y ε B}

or something else?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top