Artin's Conjecture on Primitive Roots: Perfect Squares

setkeroppi
Messages
1
Reaction score
0
If a is a perfect square then a is not a primitive root modulo p (p is an odd prime). (from Artin's conjecture on primitive roots) http://en.wikipedia.org/wiki/Artin's_conjecture_on_primitive_roots

This is what I know: suppose a = b^2
a is a primitive root mod p when , a^(p-1) congruent to 1 (mod p)
that means b^2^(p-1) congruent to 1 (mod p)..,... I got stuck from here. Someone kindly gives me a hint ?

thank you
 
Physics news on Phys.org
setkeroppi said:
If a is a perfect square then a is not a primitive root modulo p (p is an odd prime). (from Artin's conjecture on primitive roots) http://en.wikipedia.org/wiki/Artin's_conjecture_on_primitive_roots

This is what I know: suppose a = b^2
a is a primitive root mod p when , a^(p-1) congruent to 1 (mod p)
that means b^2^(p-1) congruent to 1 (mod p)..,... I got stuck from here. Someone kindly gives me a hint ?

thank you
Actually the test you give is not correct. The test is that every number n such that n^{p-1} = 1 \mod p must equal some power of a modulus p. In other words if p is prime and a is a primitive root then the set of a^i \mod p equals the congruence set {1,2,3 ... p-1}. But a = b^2 = a primitive root implies b is also a primitive root. Could b and b^2 both be primitive roots?
 
Last edited:
The matter is easy enough. Every element is such that a^(p-1)==1 Mod p, for p prime.

But to be a primitive root, a must be such that a, a^2, a^3...a^(p-1) all generate
different elements.

However should a ==b^2 Mod p, then a^(p-1)/2 ==b^(p-1) ==1 Mod p. So that a is then capable of generating no more than half the multiplicative group.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
2
Views
2K
Replies
8
Views
7K
Replies
4
Views
4K
Replies
7
Views
3K
Replies
4
Views
3K
Back
Top