I Asymptotically Flat Schwarzschild Metric

binbagsss
Messages
1,291
Reaction score
12
This is probably a stupid question but so as ##r \to \infty ## it is clear that
##-(1-GM/r)dt^2+(1-GM/r)^{-1}dr^2 \to -dt^2 +dr^2 ##

However how do you consider ## \lim r \to \infty (r^2d\Omega^2 )##..?

Schwarschild metric: ##-(1-GM/r)dt^2+(1-GM/r)^{-1}dr^2+r^2 d\Omega^2##
flat metric : ##-dt^2+dr^2+r^2 d\Omega^2##

i.e without doing this limit the result is clear, but what happens to this limit?
 
Physics news on Phys.org
What's important is not that r \rightarrow \infty, but that \frac{r}{GM} \rightarrow \infty. That is, we're assuming that r \gg GM, while still being finite.
 
The difference of the two metrics approaches zero as ##r## goes to infinity.
 
  • Like
Likes Angelika10 and DrGreg
martinbn said:
The difference of the two metrics approaches zero as ##r## goes to infinity.
But why is that assumed?
 
Could it be not true on galaxy level? It is true in the solar system and on earth, but on galaxy level we cannot fit the rotation curves with this assumption. Could it be possible that the assumption "when r goes to infinity, then spacetime becomes minkowski" is violated for galaxies?
If that would be the case, then the gravitational potential would increase. But there are examples of such behavior in nature: the potential of an atom for example (potential well)?
 
Angelika10 said:
on galaxy level we cannot fit the rotation curves with this assumption
Yes, we can. All of the proposed models for fitting galaxy rotation curves are asymptotically flat. You have already been told this in another thread that you started yourself. Please do not repeat this misunderstanding in someone else's thread.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top