Atom Emitting Photon: Energy Conservation

71GA
Messages
208
Reaction score
0
I have come across a problem which is a homework indeed, but i tried to pack this question up so that it is more theoretical.

What i want to know is if i am alowed to write energy conservation for an atom which emitts a photon (when his electron changes energy for a value ##\Delta E##) like this (The atom is kicked back when it emmits an photon):

\begin{align}
E_1 &= E_2\\
E_{ \text{H atom 1}} &= E_{ \text{H atom 2} } + E_\gamma\\
\sqrt{ \!\!\!\!\!\!\!\!\!\!\smash{\underbrace{(E_0 + \Delta E)^2}_{\substack{\text{I am not sure about}\\\text{this part where normaly}\\\text{we write only ${E_0}^2$. Should I}\\\text{put $\Delta E$ somewhere else?}}}}\!\!\!\!\!\!\!\!\!\!\!\! + {p_1}^2c^2} &= \sqrt{ {E_0}^2 + {p_2}^2c^2 } + E_\gamma \longleftarrow \substack{\text{momentum $p_1=0$ and because of}\\\text{the momentum conservation}\\\text{$p_2 = p_\gamma = E_\gamma/c$}}\\
\phantom{1}\\
\phantom{1}\\
\phantom{1}\\
\sqrt{{(E_0 + \Delta E)}^2} &= \sqrt{{E_0}^2 + {E_\gamma}^2} + E_\gamma
\end{align}
 
Last edited:
Physics news on Phys.org
##p_2 c = E_\gamma## requires that the initial atom is at rest in your coordinate system, so you can keep E_1 at the left side (and I think I would not use E_0 at all, as it can be confusing), you don't need that p1 at all.
That is possible, indeed.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top