Atomic Hydrogen: Solving Homework on Thanksgiving - Help Needed

MadPhys
Messages
2
Reaction score
0
I spent my Thanksgiving trying to solve my homework and I will need some help:

1)For fixed electron energy ,the orbital quantum number l is limited to n-1.We can obtain this result from a semiclassical argument using the fact that the larges angular momentum describes circular orbits,where all kinetic energy is in orbital form.For hydrogen-like atoms U(x)=-(Zke^2)/r
and the energy in circular orbits becomes:

E=((|L|^2)/2mr^2)-(Zke^2)/r

Quantize this realtion using the rules of |L|=(l(l+1))^0.5 and E=-((ke^2)Z^2)/(2an^2),together with the Bohr result for the allowed values of r,to show that the largest integer value of l consistent with total energy i s lmax=n-1


solution:

ke^2)Z^2)/(2an^2)=((|L|^2)/2mr^2)-(Zke^2)/r and substituting |L|=(l(l+1))^0.5


ke^2)Z^2)/(2an^2)=(l(l+1))/2mr^2)-(Zke^2)/r

but i don't know what to do after this

please can somebody help me
 
Physics news on Phys.org
You have to substitute for the r versus n dependence as given by Bohr.

Daniel.
 
When I use formula for Bohrs radius

my equation is :

n=(l(l+1))^05

and i don't know how i can from here get

lmax=n-1
 
You should have gotten an inequation. See if l_max=n will fit into your equation.

Daniel.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top