IKonquer
- 47
- 0
2.3 \cdot 10^{10} atoms decay via alpha emission have a half-life of 150 min.
How many alpha particles are emitted between t=30 min and t=160 min?
<br /> \begin{flalign*}<br /> 150 &= \frac{\ln 2}{\lambda}\\<br /> \lambda &= 0.046 <br /> \\<br /> \\<br /> K &= K_{0}e^{(-\lambda)(t)}\\<br /> &= (2.3 \cdot 10^{10})e^{(-0.046)(30)}\\<br /> K_{30} &= 5.79 \cdot 10^{9}<br /> \\<br /> \\<br /> K &= K_{0}e^{(-\lambda)(t)}\\<br /> &= (2.3 \cdot 10^{10})e^{(-0.046)(160)}\\<br /> K_{160} &= 1.46 \cdot 10^{7}<br /> \\<br /> \\<br /> K_{30} - K_{160} = 5.77 \cdot 10^{9} \text{ emitted}<br /> \end{flalign*}<br />
Did I do this correctly? And is there a way to use calculus to do this?
How many alpha particles are emitted between t=30 min and t=160 min?
<br /> \begin{flalign*}<br /> 150 &= \frac{\ln 2}{\lambda}\\<br /> \lambda &= 0.046 <br /> \\<br /> \\<br /> K &= K_{0}e^{(-\lambda)(t)}\\<br /> &= (2.3 \cdot 10^{10})e^{(-0.046)(30)}\\<br /> K_{30} &= 5.79 \cdot 10^{9}<br /> \\<br /> \\<br /> K &= K_{0}e^{(-\lambda)(t)}\\<br /> &= (2.3 \cdot 10^{10})e^{(-0.046)(160)}\\<br /> K_{160} &= 1.46 \cdot 10^{7}<br /> \\<br /> \\<br /> K_{30} - K_{160} = 5.77 \cdot 10^{9} \text{ emitted}<br /> \end{flalign*}<br />
Did I do this correctly? And is there a way to use calculus to do this?