Atoms Seeking Valence Electrons: Why 8?

  • Thread starter Thread starter Dual Op Amp
  • Start date Start date
  • Tags Tags
    Electrons
Dual Op Amp
Messages
151
Reaction score
0
simple question, why do atoms seek to have eight valence electrons?
 
Physics news on Phys.org
Simple answer, because the solution of the Schrodinger Equation requires it.
 
What's the Schrodinger equasion?
 
Dual Op Amp said:
What's the Schrodinger equasion?
It is, as I understand it, the quasi-wave equation for a little piece of matter (particle) which was the first major attempt to explain the strange quantum nuances that arose in the laboratories across the world at the beginning of the twentieth century. The equation is "good enough" to describe stationary configurations, i.e. your valence electrons, though, in a situation that complicated, there is no technique to exactly solve it that I know of.
 
the octet rule was known way befoure schroedinger found out his equation. The reason they seek to have 8 valence electrons is becuse this is the most stable arrangement for the atom. If the atom has less than 8, then the atom looses stability and becomes more reactive with other elements and compounds. (ie. Group 1 metals). And by the way, the valence shell can hace more than 8 electrons. It can have 2n^2 electrons.
 
A rule is not an explanation of itself. Just because a phsyical phenomenon was known before a particular theory does not mean that the theory is invalid or that the phenomenon itself is a better explanation of itself. In fact, most theories arise to explain phenomena that are already well known. The purpose of a theory is not to explain only one particular phenomenon, but to relate different phenomena that did not have an apparent relationship before the theory to provide a deeper explanation than an obscure rule.
 
Simple answer:
Because they do.

Theories - such as physics - only predict behaviors, they do not justify them.

That said, it's probably possible to derive the behavior from other theories.
 
Dual Op Amp said:
simple question, why do atoms seek to have eight valence electrons?

Ok folks. I'm just surprised why people are not questioning this assertion in the first place. Where in physics and chemistry does it say that "atoms seek to have eight valence electrons"?

I have a He atom. Where are the "8 valenece electrons" here?

What about atoms with the p-orbital being the valence shell? What about the ones with the f-orbital? And what about the half-filled d-orbitals? Aren't all those stable atoms too? So what is this "rule" that atoms have to "seek" 8 valence electrons?

<scratches head>

Zz.
 
If you want to get picky, then you can ask about particular atoms. Of course the 8 electron rule is not completely general. I doubt that the original question was about the number 8 so much as it was about why some specific number (2, 8, 18, etc.).
 
  • #10
turin said:
If you want to get picky, then you can ask about particular atoms. Of course the 8 electron rule is not completely general. I doubt that the original question was about the number 8 so much as it was about why some specific number (2, 8, 18, etc.).

Unfortunately, short of being a psychic, one doesn't know that. It is compounded by the fact that the original question is rather terse, and no references or sources were cited to where this "eight electrons" rule was found.

In fact, the ONLY atom that would want "eight electrons" in its valence shell is an atom with eight protons! This is only one particular atom. [Remember, the question asked about ATOMS, not molecules, not atoms in a solid state configuration, etc... or am I being "picky" again?] So there isn't even any notion of generalities here.

From where I stand, the whole original question is based on a false idea, or at best, extremely vague. So that's why I was puzzled that there was really an active followup with people attempting to answer it without anyone actually pointing out that the whole thing is based on a false premise in the first place.

Zz.
 
  • #11
I don't get it. Are you saying that hydrogen and oxygen are not atoms when they form a water molecule? Yes, I think that is being picky (excessively technical). The word, "atom," comes roughly from the Greek "indivisible." I don't know about anyone else, but when I think of an atom of matter, I think of the nucleas. If that is not technically correct, then shame on me.

Regarding your question about "where in chemistry ..." Well, I didn't take chemistry after high school, but I do remember some kind of dot diagram that we drew in my high school chemistry class. I specifically remember B, N, O, and C all reacting according to how the number of dots compared to 8. Then, I remember the explanation from the high school chemistry teacher that the atoms want to be like the noble gas atoms. This explanation actually did generalize the octet rule a bit to help explain hydrogen's desire for 2 valence electrons.

Perhaps, strictly classically, you could say that an atom fills its valence shell to the point that it becomes neutral, but if that's all there were to it, then it doesn't seem likely that there would even be chemistry. I am pretty convinced that there is chemistry, and furthermore, I am convinced that the octet rule (2n2) is not fundamental. I believe this is the issue, only because I remember how I felt in that chemistry class when I learned the strange rule. When I learned basic QM, it finally sort of made sense (as much sense as QM can make) in terms of energy eigenstates of the coulomb potential generated by the nucleas. (and yes, I realize it is emmensely more complicated than just a single weighted coulomb potential from the nucleas.)

The reason I like the Schroedinger Eq. explanation better than just stating the octet rule is that, while the octet rule is extremely limited to chemical reactions (and not even all of them), I believe the Schroedinger Eq. to offer an (at least qualitative) explanation for chemical reactions as well as many other things. In that sense, it is more satisfying to me, as a wanna-be physicist, to see how seemingly different natural phenomena are actually just different ways in which a more fundamental natural principle manifests.
 
Last edited:
  • #12
turin said:
I don't get it. Are you saying that hydrogen and oxygen are not atoms when they form a water molecule? Yes, I think that is being picky (excessively technical). The word, "atom," comes roughly from the Greek "indivisible." I don't know about anyone else, but when I think of an atom of matter, I think of the nucleas. If that is not technically correct, then shame on me.

Original queston: "simple question, why do atoms seek to have eight valence electrons?"

When I read something like that, I take it at FACE VALUE, meaning isolated atoms. If the person meant H2, or O2, then those are molecules. The eigenstates for molecules differ GREATLY than those of atoms. Just look at the hybridizations of the valence orbitals alone! Therefore, you cannot apply what you solved and know for "atoms" to "molecules" and get away with it. You literally have to resolve (if this is even possible without using any approximation) the Hamiltonian.

Moral of the story: when atoms are in close proximity to each other, especially of different species as in molecules and solid structures, atomic orbitals solutions can be easily thrown out of the window. The hybridized orbitals can look NOTHING like the orbitals of individual atoms. Thus, applying what molecules and atoms in solids would do to individual atoms is extremely suspect.

I still want to know where atoms in general SEEK to have 8 electrons in the valence shell. If this is true, we would be seeing atoms like H and He with extra electrons as the lowest energy state, and therefore, they would be common. Are they? I also tend to think this whole discussion is rather moot until the person who originally posted this question explains further.

Zz.
 
  • #13
ZapperZ said:
I ... tend to think this whole discussion is rather moot until the person who originally posted this question explains further.
I will concede with you on this. I don't want to argue.
 
  • #14
I'm talking about the covelent bonding rule. For example the molecule of oxygen shares a double bond with another oxygen atom (O2). The oxygen atom has six valence electrons, and seeks to have eight. The atoms share two electrons, and for a brief moment one of them own all eight valence electrons. This is because one oxygen atom donates an electron, and so does the other. The two electrons orbit around the two atoms. Okay, so the oxygen has six, donates one, and now has five.
When the two electrons orbit around it, it has seven valence electrons. That's not suitable. There's where the double bond come's in. Actually, each oxygen atom donates two valence electrons. So, it now has four valence electrons. The four valence electrons orbit the oxygen atoms. For a very brief moment one atom has it's eight valence electrons. This is proven in every almost every molecule. Water, methane, ozone, oxygen. If you calculate the valence electrons, it always adds to eight. My question was why does it seek to have eight. I didn't mean to incite anything, I'm sixteen years old and interested.
 
Last edited:
  • #15
I still don't understand, does it have anything to do with the particle's interactions?
 
  • #16
Okay, I've learned a little more, but what I don't know is why the atom is more stable because it's valence shell is filled.
So, my question is, why is the atom stable when it has it's outer shell filled?
 
  • #17
I believe that the energy of an atomic level is minimized by filling a shell ( s-, p-, d- etc...) shell completely.
 
  • #18
Yes, but why?
 
  • #19
Dual Op Amp said:
Yes, but why?
Observe post #2.
 
  • #20
Yes, I see post two. I also observed what came next, but none of you say why, when the valence shell is filled, it becomes stable.
 
  • #21
two electrons of opposite spin have an energy lower than two electrons of opposite spin. In the case of 8 electrons in an orbital, the electrons pair up in opposite spins. The reason for 2, then 8, then 18 electrons in filled shells is the following (I was waiting for someone else to get started on this point), is the following.

In an atom of the ^{2S+1}L_{J} variety, L is the angular momentum,S is the spin and J is the total angular momentum J= L + S. Now -J \leq L+S \leq +J, so for an atom S = \pm 1/2, and S is less than L in general, so for L = 0, 2S+1 = 2, J = 1/2,L = 1, 2S+1 = 2, J = 3/2, L = 2, 2S+1 = 2, J = 5/2. Now there are 2J+1 angular momentum states, this is the basis behind the number if states in a closed shell.

(you guys are making me reach way, way back into my atomic physics coursework days...)
 
  • #22
two electrons of opposite spin have an energy lower than two electrons of opposite spin. In the case of 8 electrons in an orbital, the electrons pair up in opposite spins. The reason for 2, then 8, then 18 electrons in filled shells is the following (I was waiting for someone else to get started on this point), is the following.

In an atom of the variety, is the angular momentum, is the spin and is the total angular momentum Now , so for an atom , and is less than in general, so for ,, . Now there are angular momentum states, this is the basis behind the number if states in a closed shell.
Okay, now I'm confused.
 
Last edited:
  • #23
Dr Transport said:
(you guys are making me reach way, way back into my atomic physics coursework days...)

Yeah, but why does the 4s gets filled up first before the 3d? <runs and hides> :)

Zz.
 
  • #24
don't remember, i said i had to reach way back into my atomic physics courses... if memory serves me correctly, the 4s state has a lower energy than a 3d.
 
  • #25
Dr Transport said:
don't remember, i said i had to reach way back into my atomic physics courses... if memory serves me correctly, the 4s state has a lower energy than a 3d.

Of course it does! That's why it gets filled up first. But do you remember why? It isn't obvious since one would think the shell with n=3 should be filled up first before the n=4 shell.

<Hums the Jeopardy tune>

Zz.
 
  • #26
I'm an old guy, been outta school way too long, enlighten us o' wise one...
 
  • #27
Dr Transport said:
I'm an old guy, been outta school way too long, enlighten us o' wise one...

Oh puhleeze! I'm older than dirt, so that's no excuse! :)

Remember that as you go up in orbital angular momentum, you're trying to squeeze in more and more electrons within the same orbital. Inevitably, the coulombic repulsion from other electrons within the same orbital can no longer be neglected, especially when you get to the d-orbital and higher. This extra coulombic repulsion term causes a "shielding" of the electrostatic potential from the nucleus.

Thus, orbitals like the 4s (which has only 2 electrons scattered in a relatively large spherical shell) would not have as much shielding as the 3d. This would cause the 4s to have a lower energy state than the 3d and so allows the 4s orbital to be filled first.

Now, if ONLY it is THIS simple. There are always exception with the 4s and 3d. You will find, if you go through the periodic table, after the 4s is filled with 2 electrons, as you are filling the 3d, the 4s alternates between 4s2 to 4s1 and back to 4s2. This is because at some point, the Hund's rule allows for a certain configuration of electrons to be more favorable than others, either due to spin-orbit coupling, etc, etc. That's why, when you look at the transition elements, it can sometime be confusing what should be filled next.

Zz.
 
  • #28
ZapperZ said:
Unfortunately, short of being a psychic, one doesn't know that. It is compounded by the fact that the original question is rather terse, and no references or sources were cited to where this "eight electrons" rule was found.

In fact, the ONLY atom that would want "eight electrons" in its valence shell is an atom with eight protons! This is only one particular atom. [Remember, the question asked about ATOMS, not molecules, not atoms in a solid state configuration, etc... or am I being "picky" again?] So there isn't even any notion of generalities here.
no.. an atom with 8 protons wouldn't have 8 valence electrons...it would have six...
 
  • #29
I agree with Balkan, the first orbital must be filled with only two electrons. Then, the final shell is filled with six electrons. The atom will try to fill the final orbit with eight electrons, even if it makes it an ion. For some reason, eight electrons causes a very stable atom.
 
  • #30
Dual Op Amp said:
I agree with Balkan, the first orbital must be filled with only two electrons. Then, the final shell is filled with six electrons. The atom will try to fill the final orbit with eight electrons, even if it makes it an ion. For some reason, eight electrons causes a very stable atom.


Oy vey!

If you agree with Balkan, then the valence shell is 6 electrons, which is the filling of the p orbital. This clearly contradicts your illusion of all atoms wanting 8 valence electrons. Your assertion that the atom will try to fill the "final orbit" (??) with EIGHT (count 'em) electrons, "even if it makes an ion" is ridiculous. What "orbit" is this, since the NEXT orbital is the d-shell?Show me where you can easily find an ion with -8e.

Zz.
 
  • #31
Well, first thing I still don't understand this, that's why I'm asking. I'm talking about the covelent bonding rule. For example the molecule of oxygen shares a double bond with another oxygen atom (O2). The oxygen atom has six valence electrons, and seeks to have eight. The atoms share two electrons, and for a brief moment one of them own all eight valence electrons. This is because one oxygen atom donates an electron, and so does the other. The two electrons orbit around the two atoms. Okay, so the oxygen has six, donates one, and now has five.
When the two electrons orbit around it, it has seven valence electrons. That's not suitable. There's where the double bond come's in. Actually, each oxygen atom donates two valence electrons. So, it now has four valence electrons. The four valence electrons orbit the oxygen atoms. For a very brief moment one atom has it's eight valence electrons. This is proven in every almost every molecule. Water, methane, ozone, oxygen. If you calculate the valence electrons, it always adds to eight.
 
Last edited:
  • #32
Dual Op Amp said:
Well, first thing I still don't understand this, that's why I'm asking. I'm talking about the covelent bonding rule. For example the molecule of oxygen shares a double bond with another oxygen atom (O2). The oxygen atom has six valence electrons, and seeks to have eight. The atoms share two electrons, and for a brief moment one of them own all eight valence electrons. This is because one oxygen atom donates an electron, and so does the other. The two electrons orbit around the two atoms. Okay, so the oxygen has six, donates one, and now has five.
When the two electrons orbit around it, it has seven valence electrons. That's not suitable. There's where the double bond come's in. Actually, each oxygen atom donates two valence electrons. So, it now has four valence electrons. The four valence electrons orbit the oxygen atoms. For a very brief moment one atom has it's eight valence electrons. This is proven in every almost every molecule. Water, methane, ozone, oxygen. If you calculate the valence electrons, it always adds to eight.

Two things: (i) you're confusing what you see in CERTAIN, LIMITED instance as being the general rule; (ii) you already are contradicting yourself with your own example.

Look at water molecule, for instance. While you are busy occupying your attention with what is going on with the "oxygen" part of the molecule, why don't you take a look at what is going on with the "H" part. Each of the hydrogen atom within the molecule only share a total of TWO electrons with the O atom - one electron that it originally had, and one electron from the O atom. This is a total of <gasp> TWO valence electrons for each H atom in the water molecule. So where is your "8 valence electron" rule here? And I hate to repeat my earlier example of H2 molecule, etc., since obviously that example was completely ignored.

I still want to know where is this -8e ions that are so stable.

Zz.
 
  • #33
Okay, first thing there is a difference between arguing and fighting. Fighting is being angry at one other, and rudely saying or doing something in order of getting rid of anger. Arguing is discussing a topic, in order to find an answer.
I'd hate to be more mature than you, since I'm <gasp> only sixteen. I'm sorry, I don't mean to be rude to my elders, but you, a fourty-two year old, instigated this. Now, I am sorry that I didn't adress hydrogen for you. Hydrogen is an exception to this rule, because it can only donate one electron, but if you notice, every atom that has more than two electrons fills up the lowest shell with, always, two electrons. Methane, four hydrogen atoms surrounding a carbon atom, has a total of eight electrons. Each hydrogen atom has only two, because it is an exception to the rule. Imagine water, it adds up to eight. Oxygen, with six valence electrons, has two hydrogen atoms bonded to it. This adds up to eight. Type in chemical bond in your search engine, an you'll find out this rule is every where.
 
Last edited:
  • #34
Dual Op Amp said:
Oxygen, with six valence electrons, has two hydrogen atoms bonded to it. This adds up to eight. Type in chemical bond in your search engine, an you'll find out this rule is every where.

EVERYWHERE??!

Here are some COMMON IONS that do not form nor want the Noble Gas "8-valence electron" structure:

Fe3+ [Ar]3d5
Cu2+ [Ar]3d9
Zn2+ [Ar]3d10
Ag+ [Kr]4d10
Pb2+ [Xe]4f14 5d10 6s2

A compound form with these do not have 8 valence electrons. Try it! Look at copper-oxide, for example! A lot of the transition metals (when you have the d-orbitals as part of the valence band) certainly do not form molecules and compounds with 8 valence electrons.

For some odd reason, the "examples" you seem to be focusing on, or maybe these are the only ones you were exposed to, seems to be only the ones having 2s 2p/3s 3p-type as the "valence" band (count this - this is EIGHT electrons total). If you look closely, only a limited range of element in the periodic table would want to either gain electrons or loose electrons to gain the equivalent noble gas structure. Once you get into elements with the 3d orbitals (the transition metals), your 8-electron rule is no longer valid! You could have gotten that from my earlier question regarding why the 4s orbital gets filled up first ahead of the 3d.

.. and please don't tell me I'm "fighting" after I spent all this time trying to explain why, and show you examples where, your 8-electron rule isn't as "everywhere" as you thought!

Zz.

Edit: additional info. Why I even bother with this, I don't know. But just to prove that I'm not making this up as I go along, here's a reference:

http://wine1.sb.fsu.edu/chm1045/notes/Bonding/Ionic/Bond02.htm

Look at the bottom of the page where there are examples using exactly the transition metals, where the octet rule fails!
 
Last edited by a moderator:
  • #35
ZapperZ said:
Oy vey!

If you agree with Balkan, then the valence shell is 6 electrons, which is the filling of the p orbital. This clearly contradicts your illusion of all atoms wanting 8 valence electrons. Your assertion that the atom will try to fill the "final orbit" (??) with EIGHT (count 'em) electrons, "even if it makes an ion" is ridiculous. What "orbit" is this, since the NEXT orbital is the d-shell?Show me where you can easily find an ion with -8e.

Zz.

i think you must excuse our friend here and stop tripping so much :wink:
i agree wholehearted with you personally, but i think he's talking about the bonding processes that leads to a lower energy level... like when two hydrogen atoms combine, or two oxygen atoms combine, obtaining a lower energy level by getting a partially shared amount of electrons which (almost) equivalents to the noble states...

am i right, Dual Op Amp?
cause in that case, it has to do with quantum mechanics, and that'll come later if you keep studying physics... it involves a whole lot of theory and will also reveal that it's really not even the case, it's just a convenient way to predict bonding... cause in a molecule, electrons will find them heavily subjected to the pauli principle and hunds rule, and everything goes sha'bang... just accept is as a convenient "rule" and learn the theory later...
 
  • #36
Okay, I was going to say that some atoms don't do this, but I didn't. Some atoms are an exception to this rule. I'm sorry for assuming you were fighting. Now, if you'll give me another chance, could you explain to me why, only in these certain atoms, do they become stable, by filling their valence electrons?
 
Last edited:
  • #37
I don't understand why ZZ is arguing so fervently about something any freshman General Chemistry course can teach you.

So, the main group "follows" the 8-electron rule AKA the octet rule, which is often broken. The transition group "follows" the 18-electron rule, which is less often violated.

But, they both add up to filled orbitals. When an orbital is full, it is lower in energy than a non-filled one. Noble gases already have filled orbitals and are very stable by themselves, no need to go sharing. Maybe your question is WHY are filled orbitals so stable? That's when you'd have to take the QM class.
 
  • #38
Why is a filled orbital lower in energy?
 
  • #39
Dual Op Amp said:
Why is a filled orbital lower in energy?

an basic explanation for this would fill a dozen pages and have unpleasent (= lovely for some of us that really like that ****, hehe) calculations that, if you're sixteen, you're probably not ready for...
 
  • #40
Thank you, anyway.
 
  • #41
Hey, I'm not sixteen and I would really like the know the answer to that. There are others viewing this thread you know. Please share because I never knew that was possible.

-EVAC
 
  • #42
evac-q8r said:
Hey, I'm not sixteen and I would really like the know the answer to that. There are others viewing this thread you know. Please share because I never knew that was possible.

-EVAC

but if you don't have quantum mechanics, it's going to be totally confusing... it is very confusing for many of my fellow students, and they have quantum mechanics...
if you're interested, i suggest taking a class in quantum mechanics or picking up a book about the basic concepts, cause it really takes some reading on the concepts before you can begin diving into the math...
 
  • #43
balkan said:
but if you don't have quantum mechanics, it's going to be totally confusing... it is very confusing for many of my fellow students, and they have quantum mechanics...
if you're interested, i suggest taking a class in quantum mechanics or picking up a book about the basic concepts, cause it really takes some reading on the concepts before you can begin diving into the math...

Balkan, why are you assuming that I haven't taken QM! Very bad. I have had more courses in advanced QM and QFT, String theory than you probably even knew existed and honestly if I wanted to know I'd just figure it out for myself. Would you like for me to explain to why or why not this is possible? The point of my post was that there are many individuals reading this thread, including myself, who may not know why this is true because there is so much to learn about QM you can never retain it all, but would like to see it explained.

-EVAC
 
  • #44
evac-q8r said:
Balkan, why are you assuming that I haven't taken QM! Very bad. I have had more courses in advanced QM and QFT, String theory than you probably even knew existed and honestly if I wanted to know I'd just figure it out for myself. Would you like for me to explain to why or why not this is possible? The point of my post was that there are many individuals reading this thread, including myself, who may not know why this is true because there is so much to learn about QM you can never retain it all, but would like to see it explained.

-EVAC
i'm assuming because this is pretty basic quantum mechanics... already in second semester we did calculations on several atoms to discover how their valence electrons acted...
if you've taken so many courses, you should know how it works, and you should furthermore know, that it's not something you can just jot down in an online forum...
 
  • #45
First of all it is not of your concern to tell me what I should and should not know. That's a big problem within the real world of physics which you have not reached yet. Everyone, or maybe just the hot shots, wants to prove that they know so much and that the next person doesn't know anything. Basically, I would encourage you to be more careful with the assumptions you make about people who you know nothing about.

So, again, if it soooooo simple (pretty basic QM), then give a simple explanation for that phenomenon. I'll spare you the dozens of pages that you say is required to adequately explain the concept. We are waiting.

EVAC
 
  • #46
EVAC,

I think you are being unreasonable here.

If you really want to know why (say) an 8 electron shell (for n=2) is lower in energy than if it had 7 (or 6 or 5, etc) electrons, please write down the Hamiltonians and plug into the time indep. Schrodinger Equation, and solve them. You will find that the energy is lowest when the shell is filled. Clearly, adding an extra electron makes it go into the next shell (n=k+l=3) which increases the energy, since, roughly speaking (E(n) = -E/n^2).

The problem with this is that you really just can't write this down on a pice of paper and solve it like it were a quadratic equation. You need a powerful numerical algorithm to get close.
 
  • #47
Thanks for that explanation. If I was being unreasonable, it is only because I don't need to be told that I should pick up a book or take a course in something that I have already taken. This was mainly for the people who wanted to see (including myself) how these eigenstates and eigenvalues might be calculated instead of being told that it is too difficult. I don't care how old the individual is, no one likes being told nor needs to be told that they are not ready to achieve something just because of their age.

balkan said:
an basic explanation for this would fill a dozen pages and have unpleasent (= lovely for some of us that really like that ****, hehe) calculations that, if you're sixteen, you're probably not ready for...

-EVAC
 
  • #48
evac-q8r said:
I don't care how old the individual is, no one likes being told nor needs to be told that they are not ready to achieve something just because of their age.
-EVAC
well perhaps nobody likes it (personally i don't care), but that doesn't make it any less true... and if they are making projects at university their supervisors will be saying the same thing, all the time... and in that case, maybe it's time to learn how to handle such a simple, and in no sense offensive, statement...
 
  • #49
The answer to why a certain configuration fo electrons are more stable than others is pretty complicated, and if you are looking for a one or two sentence answer, others have provided some good ones. I will try to give more detailed understanding.

First of all, a five minute introduction to quantum mechanics. Classically, energy can be absorbed or emitted in any amount. For example, I can hit a pool ball at 1 m/s, 1.5 m/s, 2 m/s or any value in between. However, when physicists tried to apply classical mechanics to small pecies such as atoms, there arose three problems: (1) Black Body Radiation(also called The Ultraviolet Catastrophe), (2) The Photoelectric Effect and what I call (3) The Electron Orbital Catastrophe. (1) and (2) are quite involved, but let me see if I can explain (3) briefly . By that time (circa 1900) the results of Rutherford's experiments had shown that the atom consisted of a small, positively charged nucleus surrounded by negatively charged electrons. They then began to theorize how the electrons moved about the nucleus. In the Bohr model, you can imagine the atom as forming a minuature planetary system, where the electrons rotate around the nucleus in more or less circular orbits. As you will learn later in physics moving charges should radiate electromagnetic energy, so the electron as it revolves, or moves somehow about the nucleus should lose energy and crash into the nucleus. Clearly that does not happen.

The failure of the classical theory to these phenomenon led physicists, among them Max Plank, to develop a model whereby energy could only be omitted in certain bundles, or quanta. These quanta are represented by photons (light, radio, and other electromagnetic radiation) The energy carried by a photon is equal to E = hv, where h is the universal constant called Plank's constant. and v is the greek leter "nu" standing for frequency. It turns out that small particles like electrons, protons, atoms, and molecules are not like pool balls. They can only absorb quantized energy. In other words, they can only absorb or emit photons, and in addtion only photons or a certain wavelength or frequency. Since the particles can only absorb energy in certain bundles, we can speak of energy 'states' at which the particle has absorbed n = 1, 2, 3 ... etc. photons. The state in which the particle can emit no more photons is said to be its 'ground' state, n = 1. As the particle absorbs the photon, it gains energy. As it loses energy, it will re-emit the photon. This effect can easily be seen in light bulbs: a filiament is heated, which excites an electron. The electron will return to its ground state and re-emit the photon, which produces light in the visible spectrum. Knowing the charge and mass of the proton and electron allows us to calculate these energy levels, using the principles of electromagnetic theory.

But first, we have another problem, and it has to do with something called Wave-Particle Duality. For a very long time, physicists were debating over what light consisted of. Newton suspected it consisted of particles, which he called corpsucles. Others such as Robert Hooke, one of Newton's contemporaries, believe it to be carried by a wave. By the middle of the 19th century it appeared the question was settled when Henry performed his infamous double slit experiment. When you pass a wave through a small aperture that is on the order on the wavelength of the wave, you get a phenomenon known as diffraction. This means that the wave spreads out like it originated from a point source. You can then detect the intensity of the wave(related to its amplitude) at some distance from the apeture. Waves also exhibit another property called interference. This means that waves can pass through one another, and as they do they will add or subtract together. You can see this phenomenon if you get a long rope or slinky, hold it fixed at one end, and then send one wave down it and another a short time afterwards. You will observe the two waves interfere with each other as they meet, then pass through one another. If you are still not convinced(they could merely be rebounding off of each other), send a small wave then a big one. If you do the calculations as you pass a wave through two slits, you can calculate what the intensity will be at a plane that is some distance from the slits and parallel to both slits. You should get a 'band' pattern, where you have alternating fringes of constructive and destructive interference. Well when Henry performed his experiment, he detected these bands of light, and it was accepted that light traveled as a wave.

You may notice that in order for something to travel as a wave, it requires a medium. For example, water waves travel in water, sound waves in air, etc. Without the medium, the wave cannot propogate. Well if light travels as a wave, what is the medium? Physicists in the mid 19th century called this medium the 'ether' and set out to try to understand it or detect it somehow. If light can travel from the moon, the sun and even faraway stars and galaxies, then it must permeate all space. Finally around 1885 two physicists, Michelson and Morley performed an experiment that showed that there was no ether. They constructed an apparatus, called an interferometer, which is a bit complex but basically measured interference of light that was rebounded off of mirrors. They performed the experiment and found interference as expected. Then they waited six months and performed the experiment again, and found the same interference pattern. Well if the ether is everywhere, then the Earth must be moving through it, so you would expect to get a different interference pattern depending on the motion of the Earth through the ether.

So that experiment showed that there was no ether. In addition Einstein's explanation of the photoelectric effect which I mentioned before, required a particle theory of light. So as it turned out, light was not a wave. But it was not a particle either, as Henry's double slit experiment showed So what it is it? You can consider it to be both a particle and wave, or something that our language is inadequate to describe.

(to be continued...)
 
  • #50
As a visitor from the Theory Development asylum I find this forum particularly interesting, it makes some of the points made by us nutcases. But on this forum I must stick to reality.
Have you not noticed that the formation of electrons is similar to the formation of quarks (try pentaquark foe example)? Also that good bonding requires additional shared particles or that mass fluctuates as the shared particles enters or departs. Or that radius shrinks on addition to a shell but expands with the addition of the first particle to a new shell (valence particle?). Or that the number of particles needed to complete the expansion cycle increases from one to three as atoms become more massive.

Not all behaviour patterns are repeated at both atomic and particle level but there are no unrepeated actions. Some actions are repeated on the cosmic scale, for example-
The fractional charges found in fractionally charged electrons are the same as the fractional differences in distances found on the cosmic scale but, whereas no one would include the waves radiating from the sun, in its (the sun's) radius; particle physicist always imply that particle waves should be included in particle size, I wonder why.

My point being that you can probably get a better grasp of what is happening if you accept that nature repeats its actions on all scales, therefore logically the true explanation is likely to be the one that can be applied to all scales. That explanation of course, is not known at present.
 
Back
Top