Average number of particles/subsystems in a state

devd
Messages
47
Reaction score
1

Homework Statement


A system in thermal equilibrium at temperature T consists of a large number
mimetex.gif
of subsystems, each of which can exist only in two states of energy
mimetex.gif
and
mimetex.gif
, where
mimetex.gif
. In the expressions that follow, k is the Boltzmann constant.

For a system at temperature T, the average number of subsystems in the state of energy
mimetex.gif
is given by

  1. 2$.gif
  2. kT}}$.gif
  3. kT}$.gif
  4. kT}}$.gif
  5. kT}}{2}$.gif

Homework Equations


Probability of a system to be in a system-microstate of total energy ##E_R##,
##P_R = \frac{e^{-\beta E_R}} {\sum_{R} e^{-\beta E_R}} ##

The Attempt at a Solution


We have the constraint ##\sum_r n_r= N_0 ## and ## \sum_r n_r \epsilon_r = E_R##
Where, r labels the single particle states.
Therefore, the average number of particles in the sth 1 particle state,
##\langle n_s\rangle = \frac{\sum_R n_s e^{-\beta (\sum_r n_r \epsilon_r)}}{\sum_{R} e^{-\beta (\sum_r \epsilon_r)}}##

To proceed one needs the nature of the particles.
For example,
## \langle n_s\rangle = \frac{1}{e^{\beta \epsilon_s} -1}## for Photons
## \langle n_s\rangle = \frac{1}{e^{(\beta \epsilon_s -\mu)}+1}## for FD statistics etc.

How do i proceed without further info? The question seems to conflate states of the total system with the subsystem states. I think the question is problematic and ambiguous. Anyhow, the supplied 'correct' answer is option (B).
 
Physics news on Phys.org
The given options only makes sense if by 'system' they mean ensemble and by 'subsystem' they mean members of the ensemble.
Then, ##P(E_1)= \cfrac{e^{-\beta E_1}}{e^{-\beta E_1}+e^{-\beta E_2}}##
Again, ##P(E_1)= \cfrac{N_1}{N_0}. ## Therefore, ##N_1 = N_0\left(\cfrac{e^{-\beta E_1}}{e^{-\beta E_1}+e^{-\beta E_2}}\right)##
And hence, ##N_1 = N_0\left(\cfrac{1}{1+e^{-\beta \epsilon}}\right)## , where ## E_2-E_1= \epsilon## .

But, if they're talking about a single system, then the options don't make sense to me. But, this question appeared in the GRE, so they aren't likely to make such errors. So, what am i missing?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top