Ax + b Least Squares Minimization Standard Form

cook11
Messages
2
Reaction score
0
All -

Given a set of data {(xi, yi)| i = 1,2,...,m} and the regression equation f(x) = ax + b, I want to use the simplex method to minimize the equation Sigma [(yi - f(xi))/f(xi)]^2. However, I am stuck on how to initially organize the problem. I am not sure whether the equation, Sigma [(yi - f(xi))/f(xi)]^2, needs to be put into some sort of standard form or not. Also, I am having trouble comprehending how to turn the individual [(y - f(x))/f(x)]^2 equations into constraints.

The end goal for this is to turn it into a program. The simplex method should run sufficiently fast for the type of data I will be feeding the program. However, I first need to understand the logic before any code gets written.

Let me know if I'm not stating the problem clear enough. Thank you for helping.
 
Physics news on Phys.org
You are trying to minimize

<br /> S(a,b) = \sum_{i=1}^m {\left(\frac{y_i - (a + bx_i)}{a+bx_i}\right)^2}<br />

is this correct? I'm not sure what this will give you - certainly not a regression result.

I'm not aware of any way to use the simplex method - designed for linear optimization problems, for a problem that is so far from being linear. (L1 regression problems can be solved as linear programming problems, but that is the closest item I know of.)
 
statdad -

Correct. That's the right equation. It's the Minimum Squares Percent Error (MSPE) equation used in econometrics. I figured out there are a handful of algorithms/methods to minimize nonlinear equations. Variations of Newton's Method are fairly popular for this task. Thank you for your input!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top