MHB Balance After 5 Years of Compound Interest on Monthly Deposits

AI Thread Summary
The discussion revolves around calculating the balance of an account after 5 years of monthly deposits, starting at $25 and increasing by $25 each month, with a 5% interest rate compounded monthly. The initial calculations for the first year yielded a total of $2,488.33, but this was deemed too high compared to the total deposits of $1,950, leading to a revised total of $1,988.35 for the first year. The correct approach involves using this first-year balance as the principal for subsequent years, applying the compound interest formula for the remaining four years. The final formula derived for the total balance after 5 years is approximately $11,012.38. Accurate calculations and adjustments for compounding interest are crucial for determining the correct account balance.
hatelove
Messages
101
Reaction score
1
A deposit of $$25 is made at the beginning of the 1st month, and successive monthly deposits after that is $25 more than the previous month (2nd month is a $50 deposit, 3rd month is a $75, etc.). At the beginning of the next year (after 12 months), the deposit cycle is reset back to $25 the first month, etc. and this pattern continues for 5 years. The account pays 5% compounded interest monthly at the end of each month. What is the balance of the account after 5 years?

So I'm trying to find out the formula by writing out the expanded version first and simplifying it, but I'm not sure how to write this in terms of exponents.

Month 1: 25 + 25(.05)

Let x = 25 + 25(.05)

Month 2: (x + 50)(.05) + (x + 50)

Month 3: ((x + 50)(.05) + (x + 50) + 75)(.05) + ((x + 50)(.05) + (x + 50) + 75)

Month 4: (((x + 50)(.05) + (x + 50) + 100)(.05) + ((x + 50)(.05) + (x + 50) + 100))(.05) + ((x + 50)(.05) + (x + 50) + 100)(.05) + ((x + 50)(.05) + (x + 50) + 100)

But then I remembered the formula will probably change after 12 months since the deposits start over, but the balance is different...so I'm not sure how else to really approach this.
 
Last edited:
Mathematics news on Phys.org
So far, this is what I got for the first year:

(25m)(1 + \frac{.05}{12})(\frac{1 - (1 + \frac{.05}{12})^{12}}{{1 - (1 + \frac{.05}{12})}})
where m = the month...

Not sure if this is correct, but do I need to make a new formula for each year to make up for the "new" principal in the account (the total from the preceding year)?
 
Last edited:
daigo said:
So I'm trying to find out the formula by writing out the expanded version first and simplifying it, but I'm not sure how to write this in terms of exponents.

Month 1: 25 + 25(.05)

Let x = 25 + 25(.05)

Month 2: (x + 50)(.05) + (x + 50)

Month 3: ((x + 50)(.05) + (x + 50) + 75)(.05) + ((x + 50)(.05) + (x + 50) + 75)

Month 4: (((x + 50)(.05) + (x + 50) + 100)(.05) + ((x + 50)(.05) + (x + 50) + 100))(.05) + ((x + 50)(.05) + (x + 50) + 100)(.05) + ((x + 50)(.05) + (x + 50) + 100)

But then I remembered the formula will probably change after 12 months since the deposits start over, but the balance is different...so I'm not sure how else to really approach this.
okay let's use the compound interest formula:

A=P(1+r/n)^nt

where A is the amount of the money in the account after the interest paid. P is the starting amount or the principle. R is the interest rate, N is the number of times it will be compounded if monthly than it would be 12, And T is time its in the account.
For this problem since your adding money to the account you will need to do 12 calculations time the 5 years.
All that would change is the principle

Year 1:
Month 1: 25 (1+.05/12)^12*1= \$26.28
Month 2: (26.28+50) (1+.05/12)^12*1=\$80.18
Month 3: (80.18+75)*(1+.05/12)^12*1= \$163.12
Month 4: (163+100)*(1+.05/12)^12*1= \$276.58
Month 5: (276.58+125)*(1+.05/12)^12*1=\$422.13
Month 6: (422.13+150)*(1+.05/12)^12*1=\$601.40
Month 7: (601.40+175)*(1+.05/12)^12*1=\$816.12
Month 8: (816.12+200)*(1+.05/12)^12*1=\$1068.11
Month 9: (1068.11+225)*(1+.05/12)^12*1=\$1359.26
Month 10: (1359.26+250)*(1+.05/12)^12*1=\$1691.60
Month 11: (1691.60+275)*(1+.05/12)^12*1=\$2067.21
Month 12: (2067.21+300)*(1+.05/12)^12*1=\$2488.33

Total for year 1 is 2488.33

You would need to do this for all 5 years.

but don't forget that each new year the deposits go up 25 and start over each year.
 
Last edited by a moderator:
mathpro1 said:
okay let's use the compound interest formula:
A=P(1+r/n)^nt
where A is the amount of the money in the account after the interest paid. P is the starting amount or the principle. R is the interest rate, N is the number of times it will be compounded if monthly than it would be 12, And T is time its in the account.
For this problem since your adding money to the account you will need to do 12 calculations time the 5 years.
All that would change is the principle
Year 1:
Month 1: 25 (1+.05/12)^12*1= \$26.28
Month 2: (26.28+50) (1+.05/12)^12*1=\$80.18
Month 3: (80.18+75)*(1+.05/12)^12*1= \$163.12
Month 4: (163+100)*(1+.05/12)^12*1= \$276.58
Month 5: (276.58+125)*(1+.05/12)^12*1=\$422.13
Month 6: (422.13+150)*(1+.05/12)^12*1=\$601.40
Month 7: (601.40+175)*(1+.05/12)^12*1=\$816.12
Month 8: (816.12+200)*(1+.05/12)^12*1=\$1068.11
Month 9: (1068.11+225)*(1+.05/12)^12*1=\$1359.26
Month 10: (1359.26+250)*(1+.05/12)^12*1=\$1691.60
Month 11: (1691.60+275)*(1+.05/12)^12*1=\$2067.21
Month 12: (2067.21+300)*(1+.05/12)^12*1=\$2488.33
Total for year 1 is 2488.33
You would need to do this for all 5 years.
That's too high; deposited is total of $1950; 2488.33 - 1950 = 534.33:
that's way too much interest! Your powers need to reduce by 1 each month.

The correct accumulation for 1 year is 1988.35; account "looks like":
Code:
    DEPOSIT    INTEREST  BALANCE
00   25.00       .00      25.00
01   50.00       .10      75.10
02   75.00       .32     150.42
...
10  275.00      5.80    1673.13
11  300.00      6.97    1980.10
12              8.25    1988.35
Next step is simply to use 1988.35 as 5 annual deposits
earning interest at 5% cpd monthly: ~5.116% annual.

Formula: F = D[(1 + i)^n - 1] / i
F = 1988.35(1.05116^5 - 1) / .05116 = 11012.38
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top