What is the trajectory of a ball thrown from a building?

  • Thread starter Thread starter Eiano
  • Start date Start date
  • Tags Tags
    Ball Building
AI Thread Summary
A ball is thrown from a 60-meter high building with an initial velocity of 30 m/s upward. The time to reach maximum height is calculated to be 3 seconds, with a maximum height of 15 meters above the building. The discussion focuses on determining the total time the ball is in the air and its velocity just before hitting the ground, with confusion arising over the correct application of equations. Contributors clarify that the initial velocity should not be zero and suggest using both kinematic equations and conservation of energy for verification. The importance of including the building's height in calculations is emphasized to avoid errors.
Eiano
Messages
12
Reaction score
0
Hello!

I've been working on this problem for a while and our book doesn't have a solutions manual. It has 4 parts to it and I've solved 2 already, (I think) and the last 2 are just getting to me.

-A ball is thrown from the top of a building and is given an initial velocity of 30 m.s upward. The building is 60M high.

1). Determine the time needed for the stone to reach its max height
vf=at+vi
-30=-10t, t=3

2). Maximum height?
d= .5AT^s +viT
.5(-10)(3)^2+30(3)
= -5(9)+ 90
=15M

Velocity of the ball just before it hits the ground and the total time the ball is in the air?

What i did was
x=voT +.5AT^2 and solved for T but that can't be right because the answer i get is less that 7 seconds, and question following this says find the velocity and position at 7 sec. so it has to be AT LEAST 7 sec.

then i substituted that t for v=vo+at. so really, the 4th question is not the problem it's the 3rd.

Any help is appreciated
 
Physics news on Phys.org
Eiano said:
Velocity of the ball just before it hits the ground and the total time the ball is in the air?

What i did was
x=voT +.5AT^2 and solved for T but that can't be right because the answer i get is less that 7 seconds, and question following this says find the velocity and position at 7 sec. so it has to be AT LEAST 7 sec.

then i substituted that t for v=vo+at. so really, the 4th question is not the problem it's the 3rd.

Why do you have voT? vo is supposed to be zero (this is the velocity in the beginning).
So you need only x = ½gt^2 and after that v = at.

(Or you can use conservation of mechanical energy mgh = ½mv^2).
 
KingOfTwilight said:
Why do you have voT? vo is supposed to be zero.
So you need only x = ½gt^2.


isnt Vo the initial velocity which is 30 m/s?
 
Eiano said:
isnt Vo the initial velocity which is 30 m/s?

I shouldn't be doing this in the night... I'm making mistakes all the time, sorry.
You know the time to go to the max height. Then you can calculate the time to drop from that height to the ground and use the knowledge in my 1st post.

EDIT:

After clearing my mind: yes you can use the one below too.
Check the answer by doing the both approaches.
 
Last edited:
KingOfTwilight said:
Oh, sorry, yes it is. So, you will have to use x = x0 + v0T + ½aT^2.
x0 is the height of the building.


ahh i forgot the x0, you are right, thank you!
 
KingOfTwilight said:
I shouldn't be doing this in the night... I'm making mistakes all the time, sorry.
You know the time to go to the max height. Then you can calculate the time to drop from that height to the ground and use the knowledge in my 1st post.

EDIT:

After clearing my mind: yes you can use the one below too.
Check the answer by doing the both approaches.


it's okay! at least there was someone out there to help me. again, i appreciate it!
Thanks. :)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top