Hi all.(adsbygoogle = window.adsbygoogle || []).push({});

So I'm a bit confused about finding a basis of generalized eigenvectors for an operator that is not diagonalizable. I have some "steps" in mind, but maybe someone can help me out here:

1) Find the eigenvalues of the matrix/operator

2) Find the eigenspaces corresponding to each eigenvector; for those which do not have a "big enough" basis, we must compute the generalized eigenspace for that eigenvalue

3) Here's where I'm confused! I know that the generalized eigenspace is given by kernel((T-λI)^p) for some positive integer p, and that (T-λI)^(p-1) is an eigenvector of T. I guess I'm lost with calculating this nullspace.

Are we literally taking the matrix (T-λI) and raising it to the power p? Because it doesn't seem to work on any problems I've attempted so far... anyone know?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Bases of Generalized Eigenvectors

**Physics Forums | Science Articles, Homework Help, Discussion**