Basic differentiability question

  • Thread starter Thread starter Gyroid
  • Start date Start date
  • Tags Tags
    Differentiability
Gyroid
Messages
3
Reaction score
0

Homework Statement



Let f: R -> R be a continuous function such that f '(x) exists for all x =/= 0 . Say also that the limit of f '(x) as x goes to 0 exists and is equal to L. Must f '(0) exist as well? Prove or disprove.

The Attempt at a Solution


I can't come up with a proof or counterexample. It seems like it must be true but I've learned to not completely trust my intuition when it comes to these things (pathological counterexamples come to mind). Can anyone give me a hint on whether or not this is true or how to go about proving/disproving it?
 
Physics news on Phys.org
Think about the difference quotient (f(h)-f(0))/h as h->0. If that does not converge to 0 then the there is a sequence h_i->0 such that the difference quotient is bounded away from 0. Now think about the Mean Value Theorem. Remember that the premises of the MVT don't require differentiability at the endpoints.
 
Got it. thanks a lot, that was perfect.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top