Basis of a subspace and dimension question

clurt
Messages
27
Reaction score
0
How do i go about this?

Find a basis for the subspace W of R^5 given by...

W = {x E R^5 : x . a = x . b = x . c = 0}, where a = (1, 0, 2, -1, -1), b = (2, 1, 1, 1, 0) and c = (4, 3, -1, 5, 2).

Determine the dimension of W. (as usual, "x . a" denotes the dot (inner) product of the vecotrs x and a).

Please show working, your help is much appreciated.
 
Mathematics news on Phys.org
Let x= (p, q, r, s, t). Then a.x = (1)p+ (0)q+ (2)r+ (-1)s+ (-1)t= p+ 2r- s- t= 0, b.x= (2)p+ (1)q+ (1)r+ (1)s+ (0)t= 2p+ q+ r+ s= 0, and c.x = (4)p+ (3)q+ (-1)r+ (5)s+ (2)t= 4p+ 3q- r+ 5s+ 2t= 0.

That gives you three equations in 5 "unknown" values:
p+2r- s- t= 0
2p+ q+ r+ s= 0
4p+ 3q- r+ 5s+ 2t= 0

You can solve for three of the values in terms of the other two. (Unless the equations are "dependent" in which case you can solve for two in terms of the other three or one in terms of the other four.) Write the vector (p, q, r, s, t), replacing the ones you have solved for in terms of the other two.

For example, suppose you had found that p= s- t, q= 2s+ t, and r= 3s- 2t. (Those are NOT the correct solutions. I did NOT solve the equations- that is for you to do.) Then we would have (p, q, r, s, t)= (s- t, 2s+t, 3s- 2t, s, t)= (s, 2s, 3s, s, 0)+ (-t, t, -2, 0, t)= s(1, 2, 3, 1, 0)+ t(-1, 1, 2, 0, 1) so you should be able to see that the subspace is two-dimensional and a basis for the subspace is {(1, 2, 3, 1, 0), (-1, 1, 2, 0, 1)}.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top