neopolitan said:
neopolitan said:
If you want to use the clock in the laboratory you as your reference point, you have to do this:
While a photon in the laboratory moves between mirrors, traveling 660km in 2.2ms - what happens to a photon which is at gamma of 29.3?
If 2.2ms has elapsed in the laboratory, then a period of 2.2ms/29.3 = 75μs will have elapsed in the rest frame of the test clock (the one accelerated to gamma of 29.3).
JesseM said:
No, 75 microseconds would represent how much time has elapsed on the test clock (if the test clock had closer mirrors so it could show time-intervals that small) in 2.2 ms of time in the lab frame. In the test clock's own frame, it's the lab clock that's running slow relative to the test clock, so when the lab clock has ticked forward 2.2 ms, the test clock has ticked forward 64.4 ms.
My fault. I was not clear about photons. It took a moment to see where you didn't agree since you seemed to be saying exactly the same as I said in my quote.
The light clock in the test frame is at gamma of 29.3 (it makes no sense to talk about a photon at gamma of 29.3).
Thinking about the light clock in the test frame, while 2.2ms has elapsed in the laboratory (one full in-laboratory tick-tick), the photon has traveled 1/29.3 of the distance it needs to travel for the clock to go through a full tick to tick sequence, which, according the laboratory, is 660km*29.3. According to the laboratory, the photon in the test frame's clock has traveled 660km in 2.2ms. According to the laboratory, the photon in the laboratory frame's clock has traveled 660km in 2.2ms. According to the laboratory, both photons have traveled 600km in 2.2ms.
Yes, all that makes sense. In the laboratory frame the photon in the lab's own light clock traveled vertically 660 km, while the photon in the moving "test" light clock traveled 660 km on a diagonal whose vertical component is only 660 km/29.3, and whose horizontal component is 2.2 ms times whatever speed the light clock is moving horizontally (the speed that gives a gamma of 29.3, which works out to 0.9994174c).
neopolitan said:
According to the test frame, what the laboratory frame "thinks" is 660km is actually 660km/29.3 and what the laboratory frame "thinks" is 2.2ms is actually 2.2ms/29.3.
Yes, although we should keep in mind that the last part only works if you're talking about a 2.2 ms time between two events which are located at the same horizontal position in the test frame, like the two events on the worldline of the photon in the test frame's own light clock. If the laboratory frame "thinks" there is a 2.2 ms period between two events which do
not occur at the same horizontal position in the test frame, then the time between these same two events in the test frame will not be 2.2 ms/29.3.
neopolitan said:
(Aside: You can go through the last two paragraphs and swap the words "test" and "laboratory". The arguments would be the same. To reconcile the different views, you have to use relativity of simultaneity concepts. You shouldn't necessarily forget this next step, but at the moment, it is not necessary.)
If you want to call L'/t' LAFTD/time dilation that is fine. I do see here that that makes sense. But I also see that L'/t' length contraction/TAFLC makes equal sense. (Note that above I have not defined any primed frame or any unprimed frame.)
(660km * 29.3) / (2.2ms * 29.3) = (660km) / (2.2ms) = (660km / 29.3) / (2.2ms / 29.3) = 300000 km/s
But I don't think calling it (length contraction)/TAFLC makes sense, not unless you can justify it
physically in terms of what events you're actually supposed to be measuring the distance and time between. For instance, consider your equation (660km / 29.3) / (2.2ms / 29.3). From the previous discussion, it seems this distance and time are meant to be between the following two events: 1) the event of the photon bouncing off the bottom of the test clock, and 2) the event on the photon's worldline that occurs 2.2 ms after it hits the bottom of the test clock as measured in the lab frame. In the lab frame, the spatial separation between events 1 and 2 is 660 km. Now, it's true that in the test clock's own frame, the spatial separation between these same events 1 and 2 is only (660 km / 29.3), and the time between events 1 and 2 is only (2.2 ms / 29.3). But the spatial separation here is not really obtained by either the length contraction equation (since 660 km and 660 km/29.3 don't represent the length of a single object in two different frames)
or by the spatial analogue for time dilation (since we're looking at a single pair of events that are not simultaneous in
either frame, whereas the SAFTD assumes the events are simultaneous in one of the two frames). Instead, the fact that the distance in one frame is equal to the distance in the other frame divided by 29.3 is really just a consequence of the fact that the two events are on the path of a photon, which must move at the same
speed in both frames, and since the time between events in one frame is equal to the time in the other frame divided by 29.3, the equal speeds in both frames imply that the same must be true for the distance.
As for the fact that the time between events 1 and 2 in the test frame is equal to the time between these events in the lab frame divided by 29.3, I would say that this is obtained via the "reversed time dilation equation" where you've divided both sides of the regular time dilation equation by gamma. If the usual time dilation equation can be written in words as (time between events in frame where they're
not colocated at same horizontal position) = (time between events in frame where they
are colocated at same horizontal position) * gamma, then you're just dividing both sides by gamma to get (time between events in frame where they
are colocated at same horizontal position) = (time between events in frame where they're
not colocated at same horizontal position) / gamma. Here we know that in the lab frame where events 1 and 2 are not at the same horizontal position, the time between them is 2.2 ms, so we're dividing by gamma = 29.3 to get the time between them in the test frame where they are colocated at the same horizontal position.
On the other hand, consider your equation (660km * 29.3) / (2.2ms * 29.3). From your previous discussion, here I would imagine you are considering a different pair of events: 1b) the event of the photon hitting the bottom of the test clock, and 2b) the event of the photon hitting the top of test clock. In the test clock's own frame the spatial distance between these events is 660 km and the time between them is 2.2 ms. In the lab frame, though, the distance is 660 km * 29.3 and the time between them is 2.2 ms * 29.3. But here again the distance relation cannot be said to be an example of
either length contraction
or the SAFTD, but is just a consequence of the relation between the times of the events and the fact that they both lie on the worldline of a photon which moves at the same speed in both frames. As for the time relation, this is just the normal time dilation equation of the form (time between events in frame where they're
not colocated at same horizontal position) = (time between events in frame where they
are colocated at same horizontal position) * gamma. Here, the two events are colocated at the same horizontal position in the test frame, and the time between them in that frame is 2.2 ms; multiply this by gamma=29.3 and you get the time between the same two events in the lab frame where they are not colocated at the same horizontal position.
So, it's really important to state specifically what each of the distances and times in your equations are actually supposed to represent
physically before you can decide what rules define the relation between them; as seen above, the mere fact that you're taking a time and dividing by gamma doesn't show that you're using the TAFLC, since you also do this in the reversed time dilation equation, but the two are conceptually different since if you pick a given pair of events, the reversed time dilation equation refers to the following:
(time between events in frame where they are colocated at same position along axis of motion between frames) = (time between events in frame where they are
not colocated at same position along axis of motion between frames) / gamma
Whereas the TAFLC refers to the following:
(time in the non-colocated frame between two surfaces of simultaneity from the colocated frame which pass through the two events) = (time in the colocated frame between two surfaces of simultaneity from the colocated frame which pass through the two events--or equivalently, time between the events themselves in the colocated frame) / gamma
What's more, as I hadn't noticed until I thought about this problem specifically, the fact that a distance in one frame is equal to a distance in another frame multiplied or divided by gamma does
not mean you are making use of
either the length contraction equation or the the SAFTD equation, since in your example we were talking about the distance between a specific pair of events in two frames (so it wasn't length contraction), but the events were not simultaneous in either frame (so it wasn't the SAFTD equation).
neopolitan said:
I prefer keeping in mind that lengths which are not at rest with respect to my rest frame are contracted. So I do prefer "length contraction/TAFCL" (or if you must, you can call it "length contraction/inverse time dilation" but I don't like it, because I interpret time dilation as talking about what happens between two full ticks, not about measured time, eg numbers of ticks or number of graduations between ticks).
It's not really a matter of choice, "inverse time dilation" and "TAFCL" refer to different ideas, as my word-summary above tries to show. What's more I think you are getting yourself confused by thinking in terms of discrete "ticks" of a clock rather than continuous coordinate time--the time dilation equation is just about the coordinate time between an arbitrary pair of events in a frame where they're colocated as compared to the coordinate time between the same pair of events in a frame where they're not colocated, there's no need to consider the two events to be ticks of a single clock at rest in the frame where they're colocated, and even if you do want to think of it that way, there's no need to consider them
consecutive ticks as opposed to, say, two ticks at different times which have 10,000 ticks between them. And if you think in this way, the "reversed time dilation equation" says that if you know the amount of coordinate time in frame X between some arbitrary pair of events on a clock that's moving in frame X, and you want to know how many ticks there were between these events as measured by the clock itself, then you take the original coordinate time in frame X and divide by gamma.
neopolitan said:
You might prefer to think about the fact that compared to your clock, the period between ticks of a clock in motion with respect to you is longer. (Or whatever physical definition you ascribe to time dilation, the point is that you may prefer to keep the time dilation equation whereas I prefer to keep the length contraction equation.)
Again, I don't think there's any matter of preference here--if you specify exactly what your numbers represent physically in terms of actual events or objects, then I think it's always clear what equation you're using implicitly.
neopolitan said:
There is subtle difference in approaches which might be illustrative to highlight. You are focussed very much on the relativity (which is the bit I coloured silver above, so you have to select it to read it).
I don't see how I am, perhaps you're misunderstanding me somehow. All of my above analysis is about events on the worldline of the photon in the test clock, and the distances/times between these events in both the frame of the lab and the frame of the test clock; while it's true that everything would be reversed if you instead considered events on the worldline of the photon in the
lab clock as seen from both frames, that's something I haven't even been discussing.
neopolitan said:
Relativity says two things:
Something that is in motion relative to me will be length contracted and experience less time than me, relative to me.
and
The reverse is true, relative to that something.
I am really only looking at the first part, because I know the second part is true, but not terribly useful for working out the extent of that contraction and reduction of time experienced.
As I said, the distances in your equations don't actually correspond to the length of a single object in two different frames at all. And if by "something that is in motion relative to me will ... experience less time than me, relative to me" you mean "events which occur at the same position (or same horizontal position) in the frame of the 'something' in motion relative to me will have less of a time-separation in their frame than they do in my frame", then that's exactly what I
was talking about in my analysis, since in both cases I was dealing with two events located at the same horizontal position in the test clock's frame, and comparing the time between them in the test clock's frame with the time between them in the lab frame (with the time always being larger in the lab frame). Never was I looking at the "reverse", if by that you mean events located at the same horizontal position in the lab frame.