JesseM
Science Advisor
- 8,519
- 17
OK, agree with you so far.neopolitan said:That definition is correct, although I would imagine a new student would need to be eased into it.
I can see why you can't make sense of L/t = c = L'/t'.
You specifically want to measure a time interval between two events in the primed frame and then compare that to a time inverval in the unprimed frame.
I wasn't doing that. I was saying that any time inverval in the primed frame between two events which are colocal in the primed frame, will be shorter in the unprimed frame than two analogous (but not the same) events in the unprimed frame. The half-life of one muon in the primed frame (viewed from the primed frame) will be the same as the half-life of a totally different muon in the unprimed frame (viewed from the unprimed frame. (Yes, I know half-lives are statistical, but using a gross misrepresentation here might still be instructive.)
What I am saying is that the half-life of the muon in the primed frame (viewed from the primed frame) will be less than the half-life of the muon in the primed frame (viewed from the unprimed frame).
OK, as long as you are aware that here you are using the reverse of the "normal" convention, which is to use the unprimed frame for the rest frame of the "clock" (in this case the natural clock provided by the muon's decay) and the primed frame the frame where we are measuring the time interval between events on the worldline of a moving clock. If you want to reverse this and call the muon's rest frame the primed frame, then the "normal" time dilation equation would be written as \Delta t = \Delta t' * \gamma, the "reversed time dilation equation" would be written as \Delta t' = \Delta t / \gamma, and the TAFLC would be written as \Delta t = \Delta t' / \gamma.neopolitan said:In the example BobS raised earlier in the thread, a muon at a gamma of 29.3 had a measured life time of 64.4ms as opposed to a normal (gamma of 1) life time of 2.2ms.
In the experiment he refers to, I would call the measured lifetime t
Yes. But just to be clear about terminology, do you agree that this is not the TAFLC, but just the reversed version of the regular time dilation equation?neopolitan said:and I could use the gamma to calculate what the life time in muon's "rest frame" was (quotation marks because "rest frame" is a bit of a misnomer under the circumstances). I'd prime the rest frame of the muon and leave the laboratory rest frame unprimed. That would give me:
t' = t/gamma = 64.4ms / 29.3 = 2.2ms
Yes.neopolitan said:If I had a different experiement, using light clocks, this is how I would be doing it.
At rest in the laboratory, my light clock has a tick time of 2.2ms. That makes the distance between mirrors ct/2 = 330km (giving a L = 660km, the total distance a photon travels between ticks).
Conceptually, put the light clock at a gamma factor of 29.3 (in reality, this would prove difficult).
I will measure, in the laboratory, that the time between ticks of the light clock is now 64.4ms.
This 64.6ms is the t which is equivalent to the t from the muon example. It is not equivalent to the t which I used in ct/2 = 330km (that t was 2.2ms).
What I do know is that, in the laboratory's frame, the photon in the light clock has not traveled 330km in 64.4ms. As you showed before (using time dilation) the photon has to travel much further from one mirror to the other mirror in one direction and a bit less in the other direction.
So the distance traveled between ticks (in the laboratory) is not the same L as before but rather ct where t = 64.4ms ... eg, 19320km.
This L, divided by this t = 19320km/64.4ms = 300000 km/s
For clarity we can call this distance in the light clock rest frame L' = 660 km and this time t' = 2.2 ms so it maps to your L/t = c = L'/t', correct? In this case, do you agree that t and t' are related not by the TAFLC but by the standard time dilation equation (written with your unusual convention of labeling the clock rest frame as the primed frame) t = t' * gamma? And do you also agree that L and L' are related not by the length contraction equation but by an equation which looks like the "spatial analogue of time dilation" (although I'm not sure L and L' can be assigned the same physical meaning) L = L' * gamma?neopolitan said:The distance traveled in the rest frame of the light clock is the old L (330km) and the time a photon takes to travel between them and back again is the old t (2.2ms).
This L, divived by this t = 660km/2.2ms = 300000 km/s
As long as you agree with this stuff I have no problem with the L/t = c = L'/t' argument, but I thought you had been saying that the TAFLC was the equation that was useful in understanding the invariance of c, not the time dilation equation. I guess if you want to say that the equation L = L' * gamma is useful for understanding the invariance of the speed of light that would have some truth, although I think this only works when you're talking about the two-way speed away from some fixed point in the clock's frame and back, and as I said I don't know if the physical meaning of L and L' here can be mapped to the "spatial analogue of time dilation" equation even though it looks the same.
Finally, you said earlier: "You specifically want to measure a time interval between two events in the primed frame and then compare that to a time inverval in the unprimed frame. I wasn't doing that." It seems to me you are doing that, with the two events being 1) the event of the photon leaving the bottom mirror of the light clock which is moving in the lab frame, and 2) the event of the photon returning to the bottom mirror of that same clock. The time between these events is t' = 2.2 ms in the clock rest frame and t = 64.4 ms in the lab frame. The part I had not understood was that you were not using L and L' to represent the distance between these events in the two frames, but rather the total distance covered by the photon in each frame between these two events; this would be identical to the distance between the events if the events were on a single straight photon worldline, but since you are talking about the two-way speed of light rather than the one-way speed of light, the photons are reflected so their worldlines aren't straight.
No, 75 microseconds would represent how much time has elapsed on the test clock (if the test clock had closer mirrors so it could show time-intervals that small) in 2.2 ms of time in the lab frame. In the test clock's own frame, it's the lab clock that's running slow relative to the test clock, so when the lab clock has ticked forward 2.2 ms, the test clock has ticked forward 64.4 ms.neopolitan said:If you want to use the clock in the laboratory you as your reference point, you have to do this:
While a photon in the laboratory moves between mirrors, traveling 660km in 2.2ms - what happens to a photon which is at gamma of 29.3?
If 2.2ms has elapsed in the laboratory, then a period of 2.2ms/29.3 = 75μs will have elapsed in the rest frame of the test clock (the one accelerated to gamma of 29.3).