Binary Decimals - Dual Expansion

clg211
Messages
4
Reaction score
0
Hi,

I'm trying to prove that there's a bijection between the open interval (0,1) and the set of all sequences whose elements are 0 or 1 in order to show cardinality continuum.

So let C={a1, a2, a3,...|ai is either 0 or 1} which is the set of all sequences of 0's and 1's
and let D={0.b1b2b3...|bi is either 0 or 1} which is the set of all binary decimals on the closed interval [0,1]
I think it's pretty clear that there's a bijection between these two sets.

Then the open interval (0,1)=D\{0.000..., binary decimals with tails of repeating 1's} which is the part that gives me problems.

I'm trying to get rid of the dual expansions by getting rid of the tails of 1's. For example, I have both 0.1 and 0.0111... in D which are the same number, and I want to get rid of 0.0111...

Can someone please explain to me the rational numbers that will have this dual expansion in binary? A denominator of what form will cause this? I think this will help me in explicitly defining (0,1) in terms of D. Any other thoughts on what I've already stated would be appreciated as well.
 
Physics news on Phys.org
Repeating tails of 1 in the binary expansions correspond to numbers with denominators that are powers of two.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top