A Binomial as a sum of tetranomials

goofball
Messages
2
Reaction score
0
Hello there,

I'm working on a kinetic theory of mixing between two species - b and w.

Now, if I want to calculate the number of different species B bs and W ws can form, I can use a simple combination:

(W+B)!/(W!B!)

Now, in reality in my system, ws and bs form dimers - ww, bb, wb and bw (since orientation matters).

The number of species we can build with these is

(ww+wb+bw+bb)!/(ww!wb!bw!bb!) summed over all possible combinations of ww, wb, bw and bb such that the number of ws and bs stays constant.

I have proved this numerically for up to b=100 and w=100, which in reality is all I care about, but I am interested if there is a general proof for this, and how you would go around it.

Many thanks!
 
Physics news on Phys.org
Your description is a little unclear. Could you explicitly show the equation you are trying to prove.
 
Hi hi! Thanks for your reply, mathman.

It's all a bit confusing, I know. In my original problem, I had W white subunits and B black subunits, and when I wanted to look at the number of different combinations I could add them together, that would be
\frac{(W+B)!}{W!B!}

Now, as my next problem, I for multiple reasons have to treat these as 'dimer' - that is - units consisting of two 'subunits'. This means I can get white-white, white-black, black-white, and black-black dimers (white-black and black-white are different because I care about their orientation..)

Now, when I wan to calculate then number of different combinations of these, I am effectively counting

\frac{(ww+wb+bw+bb)!}{ww!wb!bw!bb!} summed over all the possible combinations of ww, wb, bw and bb such that w and b stays constant.

A practical example - let's say B = 2 and W = 2,

in this case \frac{(W+B)!}{W!B!} = \frac{(2+2)!}{2!2!} = 6

Now, if we treat them as dimers, we have 4 different scenarios:

1) ww = 1, bb = 1

number of combinations is \frac{(ww+wb+bw+bb)!}{ww!wb!bw!bb!}=\frac{(1+0+0+1)!}{1!0!0!1!}= 2

2) wb = 2, bw = 0

number of combinations is \frac{(ww+wb+bw+bb)!}{ww!wb!bw!bb!}=\frac{(0+2+0+0)!}{0!1!0!0!}= 1

3) wb = 1, bw = 1

number of combinations is \frac{(ww+wb+bw+bb)!}{ww!wb!bw!bb!}=\frac{(0+1+1+0)!}{0!1!1!0!}= 2

4) wb = 0 bw = 2

number of combinations is \frac{(ww+wb+bw+bb)!}{ww!wb!bw!bb!}=\frac{(0+0+2+0)!}{0!0!2!0!}= 1

All of these sum to 6 which is the same result as from \frac{(W+B)!}{W!B!}.

This all actually intuitively makes sense, and I have proved this computationally from any arbitrary number of W and B, but was wondering if there was a mathematical proof for this for any general B and W (such that B+W is even so that we can form perfect dimers...)

Thanks again!
 
Your example is confusing. What is the relationship of W and B to ww, bb, wb, and bw? I don't understand why W+B isn't equal to ww+bb+wb+bw.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top