Binomial Distribution satisfies Marcoff Chain

ppedro
Messages
22
Reaction score
0
1. The problem statement

Consider the Binomial Distribution in the form

P_{N}(m)=\frac{N!}{(\frac{N+m}{2})!(\frac{N-m}{2})!}p^{\frac{N+m}{2}}q^{\frac{N-m}{2}}

where p+q=1, m is the independent variable and N is a parameter.

Show that it satisfies the marcoff chain

P_{N+1}\left(m\right)=pP_{N}\left(m-1\right)+qP_{N}\left(m+1\right)

2. The attempt at a solution

I'm trying my solution starting from this:

pP_{N}\left(m-1\right)+qP_{N}\left(m+1\right)


=p\frac{N!}{\left(\frac{N+m-1}{2}\right)!\left(\frac{N-m+1}{2}\right)!}p^{\frac{N+m-1}{2}}q^{\frac{N-m+1}{2}}+q\frac{N!}{\left(\frac{N+m+1}{2}\right)!\left(\frac{N-m-1}{2}\right)!}p^{\frac{N+m+1}{2}}q^{\frac{N-m-1}{2}}


=\frac{N!}{\left(\frac{N+m-1}{2}\right)!\left(\frac{N-m+1}{2}\right)!}p^{\frac{N+m+1}{2}}q^{\frac{N-m+1}{2}}+\frac{N!}{\left(\frac{N+m+1}{2}\right)!\left(\frac{N-m-1}{2}\right)!}p^{\frac{N+m+1}{2}}q^{\frac{N-m+1}{2}}


=p^{\frac{N+m+1}{2}}q^{\frac{N-m+1}{2}}\left(\frac{N!}{\left(\frac{N+m-1}{2}\right)!\left(\frac{N-m+1}{2}\right)!}+\frac{N!}{\left(\frac{N+m+1}{2}\right)!\left(\frac{N-m-1}{2}\right)!}\right)


I can't go any further. If you can help I would appreciate.
 
Last edited:
Physics news on Phys.org
(Edit) See what happens if you multiply by##\frac{N+1}{N+1}##.
 
My previous comment was based on a particular way that I went about it which got to the result. But, on review, I see that multiplying by (N+1)/(N+1) isn't necessary.

I would factor out the ##N!## in your expression.

The important thing is to get the two denominators in your expression to match the denominator in ##P_{N+1}(m)##. For example, what could you multiply the numerator and denominator of ##\frac{1}{\left(\frac{N+m-1}{2}\right)!\left(\frac{N-m+1}{2}\right)!}## by to get the denominator in ##P_{N+1}(m)##?

[By the way, welcome to PF, ppedro!]
 
Hey TSny! Thanks for your reply. I see what you're suggesting but I'm not being able to compute it. The factorials are not helping me simplify the expression.
 
##P_{N+1}(m)## has a denominator of ##(\frac{N+m+1}{2})!(\frac{N-m+1}{2})!##.

Compare that to your first denominator ##(\frac{N+m-1}{2})!(\frac{N-m+1}{2})!##.

To get your denominator to match the denominator in ##P_{N+1}(m)##, you've got to somehow transform ##(\frac{N+m-1}{2})!## into ##(\frac{N+m+1}{2})!##.

What can you multiply ##(\frac{N+m-1}{2})!## by to produce ##(\frac{N+m+1}{2})!##?
 
\frac{(N+m+1)!}{(N+m-1)!}=\frac{(N+m+1)(N+m)(N+m-1)!}{(N+m-1)!}=(N+m+1)(N+m)<br />
 
No. Note that ##\frac{N+m+1}{2} = \frac{N+m-1}{2} + 1##.
 
Ok, I see your point. Thanks!
 
Back
Top