? said:
I looked at this link and do not find its reasoning to be compelling.
Why not? The rest of your post talks about coordinate singularities, but there's nothing at the page I linked to about coordinate singularities; it doesn't even talk about coordinate systems at all. The discussion is entirely in terms of coordinate-free (covariant or invariant) concepts.
That said, let's talk about the "singularity" itself:
? said:
I cannot think of a single other instance where a scientific enterprise is so critically dependent on a mathematical model with featuring a singularity (the Schwarzschild radius). In my view, forming a theory around this undefinable mathematical region is beyond belief. The singularity issue trumps all other mathematical reasoning.
The theory is not "formed around" the coordinate singularity at the Schwarzschild radius. Nor does the mathematical model depend on it. See below for more comments on that.
But even if we restrict attention to Schwarzschild coordinates and the coordinate singularity they have at r = 2M, you're making an awfully big deal about something which is not even a physical concept at all, just a mathematical artifact of a particular coordinate system. Coordinate singularities are well-understood and not at all mysterious. Our standard system of locating points on Earth by latitude and longitude has a coordinate singularity--actually two of them, at the North and South poles. See, for example, the Wiki page here:
http://en.wikipedia.org/wiki/Mathematical_singularity#Coordinate_singularities
Does that mean the North and South poles are somehow mysterious, or that there is some problem with "forming a theory of Earthbound locations" using latitude and longitude?
? said:
I feel reinforced in this belief by reading the very discussions going on in this thread. The posters here are obviously very informed in the technology, very dedicated and very intelligent - yet the large disparities in viewpoints seems beyond reconciliation, despite the fact that all involved can refer to the same Schwarzschild mathematical model to back up their viewpoint - and have done so repeatedly in this thread with conviction.
You are mistaken. Some people have indeed referred to Schwarzschild coordinates to back up their views; others, such as I, have said that if you want to talk about the actual physics, you have to look at things that are covariant or invariant--i.e., that *don't* depend on a particular coordinate system being used. They *do* depend on the *geometry*, which is a mathematical object in its own right, independent of whatever coordinate chart or charts we use to describe it. But claims about a particular feature specific to Schwarzschild coordinates, whether it's a singularity at r = 2M or anything else, can't be used to make claims about the geometry.
So the different "viewpoints", as you call them, are due to the fact that people are talking about different things. Some are talking about a specific coordinate chart; others are talking about a geometry, independent of any particular coordinate chart, because it's the geometry that affects the physics. See below.
? said:
That is the problem with singularities - since you can't define with certainty what is happening, anything can be happening.
Really? So because the North and South poles don't have a well-defined longitude, anything can happen there?
This is a prime example of confusing coordinates with physics. The geometry of the Earth's surface is perfectly well-defined at the poles. It's just that latitude and longitude coordinates don't do a good job of describing it there. So we use other coordinates; for example, there are various "polar projections" that are used, as described here:
http://www.geowebguru.com/articles/242-polar-maps-and-projections-part-1-overview
Similarly, the geometry of the spacetime surrounding a black hole is perfectly well-defined at the event horizon; we can tell that by computing covariant and invariant quantities like the curvature tensor and showing that they are finite and well-behaved. It's just that Schwarzschild coordinates don't do a good job of describing the geometry at r = 2M. So if we want to describe things in terms of coordinates at r = 2M, we use other coordinates. There are a number of choices, which have been mentioned in this thread.
? said:
And the theories presented in this thread about what happens after the EH cover the gamut of possibilities, all with supposed mathematical justification.
As far as the "theories" presented in this thread, I don't see a gamut of possibilities; I see only two:
(1) Objects can reach and go inside the event horizon; i.e., there is a region of spacetime inside the horizon;
(2) Objects cannot reach or go inside the horizon; i.e., spacetime "ends" at the horizon, there is no region of spacetime inside it.
Theory #1 is based on looking at covariant and invariant quantities like the curvature tensor; theory #2 is based on looking at the coordinate singularity in the Schwarzschild exterior chart. So the different "theories" are because people are talking about different things.
? said:
When a theory is so complex that nobody can truly understand it, then anyone can come up with a theory to explain it.
What evidence do you have that nobody can understand GR's description of a black hole spacetime at and around the event horizon? You may have evidence that *some* people don't understand it (and you hardly need this thread to show that; there are plenty of others, not to mention plenty of other websites). But it's a long, long haul from that to the claim that *nobody* understands. If you really want to defend the latter claim, you'll need some really impressive evidence.
? said:
The singularity at the Schwarzschild radius is the starting point in the confusion by keepit (who began this thread)...The Schwarzschild Metric is the key mathematical starting point for all this confusion. This defines, by default, that it cannot possibly be correct.
No, it means that it can't describe the geometry at r = 2M. But it does just fine at describing it for r values much larger than 2M, and it even does a passable job describing it wherever r > 2M if you remember to allow for the "distortion" it introduces close to the horizon.