A Black Hole Orbit Inequality: Explained

quasarLie
Messages
50
Reaction score
0
Hello,
Here's an interesting question inspired by a homework probem (not mine), we know that circular orbit (for scjwarzchild black hole) exist only if L ≥ sqrt3 c Rsch=Lisco . Where does this inequality come from? do you have a lecture which can help me to understand?
Thanks
 
Physics news on Phys.org
Circular orbit or stable circular orbit?

To find the closest stable orbit you can look at the effective potential. In Newtonian mechanics this always has a minimum, in GR you get a 1/r3 term (if I remember correctly) that ruins the minimum below this critical L. For lower L you have a potential that goes down all the way to the black hole.
 
  • Like
Likes vanhees71
quasarLie said:
Hello,
Here's an interesting question inspired by a homework probem (not mine), we know that circular orbit (for scjwarzchild black hole) exist only if L ≥ sqrt3 c Rsch=Lisco . Where does this inequality come from? do you have a lecture which can help me to understand?
Thanks
It is covered by equations 7.29 to 7.55 in Carrol's online notes.
 
  • Like
Likes Orodruin
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top