Before November 1970, most physicists, following Roger Penrose's lead, had thought of a hole's horizon as "the outermost location where photons trying to escape the hole get pulled inward by gravity." This old definition of the horizon was an intellectual blind alley, Hawking realized in the ensuing months, and to brand it as such he gave it a new, slightly contemptuous name, a name that would stick. He called it the apparent horizon.
Hawking's contempt had several roots. First the apparent horizon is a relative concept, not an absolute one. Its location depends on the observer's reference frame; observers falling into the hole might see it at a different location from observers at rest outside the hole. Second, when matter falls into the hole, the apparent horizon can jump suddenly, without warning, from one location to another--a rather bizarre behavior, one not conducive to easy insights. Third and most important, the apparent horizon had no connection at all to the flash of congealing mental pictures and diagrams that had produced Hawking's New Idea.
Hawking's new definition of the horizon, by contrast, was absolute (the same in all reference frames), not relative, so he called it the absolute horizon. This absolute horizon is beautiful, Hawking thought. It has a beautiful definition: It is "the boundary in spacetime between events (outside the horizon) that can send signals to the distant universe and those (inside the horizon) that cannot." And it has a beautiful evolution: When a hole eats matter or collides with another hole or does anything at all, its absolute horizon changes shape and size in a smooth, continuous way, instead of a sudden, jumping way (Box 12.1)
...
Why were Penrose and Israel so wedded to the apparent horizon? Because it had already played a central role in an amazing discovery: Penrose's 1964 discovery that the laws of general relativity force every black hole to have a singularity at its center. I shall describe Penrose's discovery and the nature of singularities in the next chapter. For now, the main point is that the apparent horizon had proved its power, and Penrose and Israel, blinded by that power, could not conceive of jettisoning the apparent horizon as the definition of a black hole's surface.
They especially could not conceive of jettisoning it in favor of the absolute horizon. Why? Because the absolute horizon--paradoxically, it might seem--violates our cherished notion that an effect should not precede its cause. When matter falls into a black hole, the absolute horizon starts to grow ("effect") before the matter reaches it ("cause"). The horizon grows in anticipation that the matter will soon be swallowed and will increase the hole's gravitational pull (Box 12.2).
Penrose and Israel knew the origin of this seeming paradox. The very definition of the absolute horizon depends on what will happen in the future: on whether or not signals will ultimately escape to the distant Universe. In the terminology of philosophers, it is a teleological definition (a definition that relies on "final causes"), and it forces the horizon's evolution to be teleological. Since teleological viewpoints have rarely if ever been useful in modern physics, Penrose and Israel were dubious about the merits of the absolute horizon.
Hawking is a bold thinker. He is far more willing than most physicists to take off in radical new directions, if those directions "smell" right. The absolute horizon smelled right to him, so despite its radical nature, he embraced it, and his embrace paid off. Within a few months, hawking and James Hartle were able to derive, from Einstein's general relativity laws, a set of elegant equations that describe how the absolute horizon continuously and smoothly expands and changes its shape, in anticipation of swallowing infalling debris or gravitational waves, or in anticipation of being pulled on by the gravity of other bodies.