B Black Holes, Gravitational Waves & Gravitons Explained

Raffaele
Messages
6
Reaction score
0
I wonder why electromagnetic waves don't escape from a black hole while gravitational waves (obviously) do.
What is the difference between the two kind of waves?
And between gravitons and photons?

thank you for your attention
 
Physics news on Phys.org
Raffaele said:
I wonder why electromagnetic waves don't escape from a black hole while gravitational waves (obviously) do.
Gravitational waves do not escape from the interior of a black hole. They emerge from the region of space-time outside the event horizon(s).
 
Gravity waves are a warpage of spacetime behaving similar to a compression wave, caused by the relative motion of two masses and propagating at lightspeed. Gravity begins at the surface of the BH event horizon, the motion of the horizon sends a wave of warped spacetime beginning at that point. Electromagnetic waves come from moving charges, and those generated outside the ergosphere of the event horizon can escape, just like gravity waves, but any electromagnetic waves beginning inside the event horizon cannot be detected, nor can any gravity waves caused by the singularity itself.
An observable 'naked singularity' has been theorized for the early pre-bang universe but nothing conclusive has come of it.
 
Torbert said:
Gravity waves are a warpage of spacetime behaving similar to a compression wave, caused by the relative motion of two masses and propagating at lightspeed.
Nitpick: gravity waves are a kind of surface wave on water. You are talking about gravitational waves.

Gravitational waves are not compression waves, which are longitudinal mechanical waves, but are transverse tensor waves which change the notion of distance in two direction perpendicular to their direction of travel. And they are generated by stress-energy distributions with a changing quadropole moment, not just "two masses in relative motion".
Torbert said:
Gravity begins at the surface of the BH event horizon, the motion of the horizon sends a wave of warped spacetime beginning at that point.
Gravitational waves can never be traced back to events inside a black hole, true, but this does not mean that "gravity begins at the event horizon". We are able to describe the interior of black holes using general relativity - our current best theory of gravity. And "motion of the horizon" is a rather difficult thing to adequately describe since the horizon in this case is a null surface in a non-stationary spacetime. That's why "changing quadropole moment" is used as the source, not relative motion.
Torbert said:
Electromagnetic waves come from moving charges
Accelerating charges, in fact.
Torbert said:
those generated outside the ergosphere of the event horizon can escape,
The ergosphere and the event horizon are two different things. Electromagnetic waves generated outside the event horizon can escape.
 
Last edited:
Ouch, simplifying and not looking up the facts does not go far here. Compression waves would require aether, I actually know that but didn't go far in making it obvious.
The innermost stable orbit is outside the event horizon but material inside will relentlessly spiral inward until the event horizon is reached.
I thought this was the same as the ergo sphere where a quick dip with an unstable orbit would transfer energy outside. But if energy could be collected then the in fall is not inevitable.
I will do better reviewing before posting in the future.
 
Torbert said:
Gravity begins at the surface of the BH event horizon

This is wrong. A correct statement would be that gravitational waves observable far away are emitted from outside the horizon. But "gravity" is not limited to regions from which gravitational waves are emitted that are observable far away.

Torbert said:
An observable 'naked singularity' has been theorized for the early pre-bang universe

What are you talking about here? Can you give a reference?

Torbert said:
The innermost stable orbit is outside the event horizon but material inside will relentlessly spiral inward until the event horizon is reached.
I thought this was the same as the ergo sphere where a quick dip with an unstable orbit would transfer energy outside. But if energy could be collected then the in fall is not inevitable.

None of this has anything to do with emission of gravitational waves.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top