So let's say we are working with D3 (diherdral group), and more specifically with 2D irreps of D3 (it is denoted by 'E' in here
http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=303&option=4).
The matrix representation is:
##\mathbf{D}\left(Id\right)=\left(\begin{array}\\1 & 0\\ 0 & 1\end{array}\right)##
##\mathbf{D}\left(r_{120^\circ}\right)=\left(\begin{array}\\-\frac{1}{2} & -\frac{\sqrt{3}}{2}\\\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)##
##\mathbf{D}\left(r_{240^\circ}\right)=\left(\begin{array}\\-\frac{1}{2} & \frac{\sqrt{3}}{2}\\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)##
##\mathbf{D}\left(m_{90^\circ}\right)=\left(\begin{array}\\-1 & 0\\\ 0 & 1\end{array}\right)##
##\mathbf{D}\left(m_{210^\circ}\right)=\left(\begin{array}\\-\frac{1}{2} & -\frac{\sqrt{3}}{2}\\\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)##
##\mathbf{D}\left(m_{330^\circ}\right)=\left(\begin{array}\\-\frac{1}{2} & \frac{\sqrt{3}}{2}\\\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)##
The characters are: ##\chi=2,\,-1,\,-1,\,0,\,0,\,0##, respectively.
Next I create a bigger representation ##\mathbf{M}=\mathbf{U}\,\left(\mathbf{D}\oplus\mathbf{D}\right)\,\mathbf{U}^\dagger##, where ##\mathbf{U}## is simply a unitary real-valued matrix.
##\mathbf{U}=\exp\left(\mathbf{P}\right)##
##\mathbf{P}=\left(\begin{array}\\ 0 & -1 & 0 & 0 \\ 1 & 0 & -1 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 1& 0 \end{array}\right)##
Clearly identy will look as 4d identity, but (e.g.):
##\mathbf{M}\left(m_{210^\circ}\right)\approx\left(\begin{array}\\
0.3221 & 0.5709 & 0.1493 & -0.7403 \\
0.5709 & -0.5176 & -0.5786 & -0.2674 \\
0.1493 & -0.5786 & 0.7693 & -0.2261 \\
-0.7403 & -0.2674 & -0.2261 & -0.5738 \\
\end{array}\right)##
The trace of this is still zero, so I know this corresponds to reflection, but as you can see it is not at all block-diagonal. Same goes for other matricies. Now, if I was given these matricies (##\mathbf{M}\left(Id\right),\,\mathbf{M}\left(r_{120^\circ}\right),\,\dots ##) and told that they are a representation of D3 group, I could work out that this representation is isomorphic to ##\mathbf{D}\oplus\mathbf{D}## using characters alone. But then, how would I find the basis in which this representation is block-diagonal? How would I find ##\mathbf{U}## if I was not given it?