I Boas 1.13 Compound interest/geometric series

  • I
  • Thread starter Thread starter Battlemage!
  • Start date Start date
  • Tags Tags
    Boas Series
Battlemage!
Messages
292
Reaction score
44
From Mary Boas' "Mathematical Methods in the Physical Sciences" Third Edition.

I'm not taking this class but I was going through the textbook and ran into an issue. The problem states:

If you invest a dollar at "6% interest compounded monthly," it amounts to (1.005)n dollars after n months. If you invest $10 at the beginning of each month for 10 years (120 months), how much will you have at the end of the 10 years?​

Now, the problem expects you to use the formula for partial sum of a geometric series.
S_n=\frac{a(1-r^n)}{1-r}

So, as far as I can tell, the series is
10*1.005+10*1.005^2+10*1.005^3+...
which would mean:
a = 10*1.005 = 10.05,
r = 1.005,
and n = 120.​

Computing Sn with those values gives about $1646.99.

Interestingly, Quora gave the exact same answer: https://www.quora.com/Investing-que...much-will-you-have-at-the-end-of-the-10-yearsMy problem? Compound interest calculators give a totally different number. For example:
http://www.bankrate.com/calculators/savings/compound-savings-calculator-tool.aspx
gives $2014.
screencap: https://s15.postimg.org/gxaujjt8b/compoundinterest1.jpg

https://www.investor.gov/additional...l-planning-tools/compound-interest-calculator
gives $2013.46.
screencap: https://s17.postimg.org/4ai0gb7xb/compoundinterest2.jpg

So, I am kind of lost here. Did I do the problem wrong? If so please enlighten me. I double checked their value of 1.005 using (1+r/n)nt; (1 + 0.06/12) = 1.005, so 1.005n appears to be valid to me.Any suggestions?
 
Mathematics news on Phys.org
Think about the differences among annual/yearly, monthly (which you've got), and "continuous" compounding.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top