Bogoliubov superfluidity Hamiltonian

  • Thread starter Thread starter Petar Mali
  • Start date Start date
  • Tags Tags
    Hamiltonian
Petar Mali
Messages
283
Reaction score
0
\hat{H}=\sum_{\vec{p}}\frac{p^2}{2m}\hat{b}^+_{\vec{p}}\hat{b}_{\vec{p}}+\frac{1}{2V}\sum_{\vec{p}_1,\vec{p}_2,\vec{p}_3}W(\vec{p}_1-\vec{p}_3)\hat{b}^+_{\vec{p}_1}\hat{b}^+_{\vec{p}_2}\hat{b}_{\vec{p}_3}\hat{b}_{\vec{p}_1+\vec{p}_2-\vec{p}_3}

Is this correct form or maybe?

\hat{H}=\sum_{\vec{p}}\frac{p^2}{2m}\hat{b}^+_{\vec{p}}\hat{b}_{\vec{p}}+\frac{1}{2N}\sum_{\vec{p}_1,\vec{p}_2,\vec{p}_3}W(\vec{p}_1-\vec{p}_3)\hat{b}^+_{\vec{p}_1}\hat{b}^+_{\vec{p}_2}\hat{b}_{\vec{p}_3}\hat{b}_{\vec{p}_1+\vec{p}_2-\vec{p}_3}

One form is in book and one in scripts! This is first relation so I'm not quite sure! Thanks for you're answer!
 
Physics news on Phys.org
Actually both forms are correct. In the second, the author assumes the unit cell volumn is one, so N indicates the total volumn V.
 
Back
Top