Boundary considerations in extremum problems

  • Thread starter Thread starter silver-rose
  • Start date Start date
  • Tags Tags
    Boundary Extremum
silver-rose
Messages
47
Reaction score
0

Homework Statement


We are given a word problem and asked find maxima/minima (ie a simple example would be to find the least amount surface area required to build a box of a given volume).

Is it necessary to explicitly show that the relative interior max/min, calculated by setting the gradient to 0, is also the absolute extremum by evaluating possible extrema on the boundaries of the domain of the function, even when the physical considerations of the problem render it blatantly obvious that considering the boundaries will not yield a reasonable answer?

For example, for the aforementioned box problem,

x = length of box
y = width of box
z = height of box

The Domain of the box is

D --> { x,y,z : x \geq0, y\geq0, z\geq0 }

Must we explicitly evaluate boundary situations for when x=0 , y=0, z=0 ? (In this case, we see immediately that the volume will be 0) What about for the cases where x is large?

Do I also need to take the limit of x, y, and z to infinity?
 
Last edited:
Physics news on Phys.org
silver-rose said:
Is it necessary to explicitly show that the relative interior max/min, calculated by setting the gradient to 0, is also the absolute extremum by evaluating possible extrema on the boundaries of the domain of the function, even when the physical considerations of the problem render it blatantly obvious that considering the boundaries will not yield a reasonable answer?
You should solve the boundary conditions, however simple. In a case where it is blatantly obvious that the extrema are not on the boundary, you may include a simple proof that, for example, the function is uniformly zero on the boundary, but positive on an interior point.
Do I also need to take the limit of x, y, and z to infinity?
This is a good question. Suppose you are asked to maximize f(x) = x2 over x > 0. Obviously, there is no maximum. Then, you have a choice between stating that f has no maximum, and stating that f is maximized when x becomes infinite.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top