Breakdown of a Logistic Equation

defaultusername
Messages
16
Reaction score
0

Homework Statement


I feel so stuck.
Given the Logistic Equation:
$$\frac{dP}{dt}=kP(1-\frac{P}{A})$$

a.). Find the equilibrium solutions by setting $$\frac{dP}{dt}=0$$ and solving for P.
b.). The equation is separable. Separate it and write the separated form of the equation.
c.). Use partial fraction decomposition and then integrate both sides of the equation to solve for P.

Homework Equations


$$\frac{dP}{dt}=kP(1-\frac{P}{A})$$

The Attempt at a Solution


a.) $$\frac{dP}{dt}=0$$
$$⇒P=0, A$$

b.) $$⇒\frac{1}{P}+(\frac{\frac{1}{A}}{1-\frac{P}{A}})dP=k dt$$
$$⇒(\frac{dP}{1-\frac{P}{A}})=k dt$$

c.) $$⇒(\frac{dP}{1-\frac{P}{A}})=k dt$$
$$⇒P=\frac{B}{P}+\frac{C}{1-\frac{P}{A}}$$

I am not even sure if I am doing everything correctly or not. I need to find a common denominator to solve for B and C but my attempts always end up as a huge mess.
 
Physics news on Phys.org
defaultusername said:

Homework Statement


I feel so stuck.
Given the Logistic Equation:
$$\frac{dP}{dt}=kP(1-\frac{P}{A})$$

a.). Find the equilibrium solutions by setting $$\frac{dP}{dt}=0$$ and solving for P.
b.). The equation is separable. Separate it and write the separated form of the equation.
c.). Use partial fraction decomposition and then integrate both sides of the equation to solve for P.

Homework Equations


$$\frac{dP}{dt}=kP(1-\frac{P}{A})$$

The Attempt at a Solution


a.) $$\frac{dP}{dt}=0$$
$$⇒P=0, A$$

b.) $$⇒\frac{1}{P}+(\frac{\frac{1}{A}}{1-\frac{P}{A}})dP=k dt$$
I can't tell what you did here (above). Start with the given diff. equation and separate it, using my hint below.
$$\frac{dP}{dt}=kP(1-\frac{P}{A})\\
\Rightarrow \frac{dP}{dt}=\frac k A P(A - P)$$
Now it should be easier to separate.
defaultusername said:
$$⇒(\frac{dP}{1-\frac{P}{A}})=k dt$$

c.) $$⇒(\frac{dP}{1-\frac{P}{A}})=k dt$$
$$⇒P=\frac{B}{P}+\frac{C}{1-\frac{P}{A}}$$

I am not even sure if I am doing everything correctly or not.
What you did is definitely wrong. You should get P as a function of t.
defaultusername said:
I need to find a common denominator to solve for B and C but my attempts always end up as a huge mess.
 
  • Like
Likes defaultusername
Following where you write b) you have just made a mistake in getting the partial fractions.

In the following lines, you've lost yourself - you drop a term for no reason and integrate incorrectly.

You will need to integrate a LHS with respect to P, and right hand side with respect to t.

Revise the integrals of things like dP/P if you have forgotten.
 
  • Like
Likes defaultusername
Thanks for your help!
 
defaultusername said:
Thanks for your help!

See my sig. :oldsmile: :oldwink:
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top