Bungee jumping and Conservation of energy

AI Thread Summary
The discussion focuses on the physics of bungee jumping, specifically analyzing the equation for the length of the bungee cord in relation to maximum acceleration. When maximum acceleration (amax) equals gravitational acceleration (g), the length of the cord (L) is zero, indicating it begins to stretch immediately upon jumping. Conversely, as amax approaches infinity, L equals the height (H), suggesting the cord never stretches and the jumper remains in free fall. The conversation emphasizes the importance of treating the problem as a limits issue, clarifying that the relationship between acceleration and cord length requires careful consideration of these limits. Ultimately, the analysis reveals complexities in the conservation of energy and the dynamics of bungee jumping.
solarcat
Messages
22
Reaction score
3

Homework Statement


A person is bungee jumping from the top of a cliff with height H. The un-stretched length of the bungee rope is L. The person comes to a stop just before hitting the ground. The length of the cord is equal to H(amax-g)/(amax+g), where amax is the maximum acceleration upward right before the person hits the ground. Show this equation is physically reasonable by evaluating it when amax = g and amax = infinity.

Homework Equations


Conservation of energy

The Attempt at a Solution


amax = g
L = H(g-g)/(g+g) = 0
This means that the cord starts stretching right as the person jumps.
amax = infinity
L = (infinity -g)/(infinity+g)*H = H
If the length of the cord is equal to H, the cord never starts stretching.
If the cord never starts stretching, then the jumper is always in free-fall, and the acceleration is equal to g. Then shouldn't the results be the other way around?
 
Physics news on Phys.org
solarcat said:
The length of the cord is equal to H(amax-g)/(amax+g),
It's not clear which length that refers to, but you seem to have interpreted it correctly.
solarcat said:
This means that the cord starts stretching right as the person jumps.
Yes, but why should that correspond to amax=g? I don't think it is at all obvious, but in order to satisfy the question there needs to be some justification.
solarcat said:
evaluating it when ... amax = infinity.
Bad question. It should say as amax tends to infinity, and likewise you need to use limits in the answer. You cannot validly write:
solarcat said:
L = (infinity -g)/(infinity+g)*H = H

solarcat said:
If the cord never starts stretching, then the jumper is always in free-fall
You are given that the jumper does come to a halt just before hitting the ground, so it cannot be all free fall.
 
haruspex said:
It should say as amax tends to infinity, and likewise you need to use limits in the answer. You cannot validly write: L = (infinity -g)/(infinity+g)*H = H
OK, fair enough. But I have also derived the equation amax = k/m(H-L) - g. This is because when the cord starts stretching, the net force on the jumper ma = Ft-mg. a is maximized when Ft (tension) is greatest, which would be when the cord is stretched the most, which would be at the bottom. Then
m*amax = k(H-L) - mg
amax = (k/m)(H-L) - mg
(infinity + mg) (m/k) = H-L
Smaller values of L result in larger values of amax, and the length can't be negative... But I'm confused, because also, the elastic potential energy at the bottom should equal the initial potential energy, mgH.
So mgH = 1/2 k (H-L)^2
mgH/(H-L) = 1/2 k (H-L)
2mgH(H-L) = k (H-L)
2gH/(H-L) = (k/m)(H-L)
From the last equation, amax + mg = (k/m)(H-L)

amax + mg = 2gH/(H-L)
As amax gets larger and larger, the denominator should get smaller, so H-L = 0 --> H = L

And I'm still not sure why L = H(g-g)/(g+g) = 0
 
Last edited:
solarcat said:
(infinity + mg) (m/k) = H-L
This illustrates the need to treat it as a limits problem. That equation tells you that as amax tends to infinity k tends to infinity, but it does not tell you the relationship between those two trends, so it does not indicate what happens to H-L.
solarcat said:
amax + mg = 2gH/(H-L)
That can be turned into the equation you were given. By eliminating k it does allow you to see what happens to H-L.
solarcat said:
And I'm still not sure why L = H(g-g)/(g+g) = 0
I guess you mean you do not see a simple reason why amax=g should correspond to L=0. Maybe you can reason that L=0 means this will be SHM across the entire height H. What would that tell you about the relationship between acceleration at the top and acceleration at the bottom?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top