erobz said:
That is the buoyant force. There also an unbalanced force on the inside of the container pushing up (there is no bottom of the container for it to cancel). If you are sitting at some depth holding it ##F##, and you wish to go deeper by increasing the force ##F'##, the force ##F'## must do the amount of work necessary to compress the gas a further distance ##\delta##. ( ##\delta \neq \Delta h## )
I am not following what you are trying to establish here. Let me try to talk it through.
You are at a particular depth. You are applying a force ##F## that is required to hold the container plus entrained air in place at that depth.
Whether the container is currently ascending or descending, the amount of force required to do this is identical. There is no hysteresis. If you increase the downward force that you apply, you will no longer be in an equilibrium situation. The container and the entrained air will be accelerating downward.
But we are told the the container and the entrained air are not accelerating. We are modulating the applied force so that they descend at a uniform pace. It should follow that the applied force is simply the equilibrium force required to balance with weight and buoyancy.
Still, you point out, correctly, that work is being done on the gas as it is compressed. How can this be?
This can be because the glass plus contained air is not descending at a uniform rate. The glass is descending at a uniform rate, but the lower surface of the air (and, hence, the centroid of the volume of air) is not. It is descending at a lower rate.
If we calculate the rate at which work is being done on the system, we can add up the work done by our downward push. That is easy. ##F_\text{hand} \cdot v##. But when we calculate the work done by fluid pressure (aka buoyancy), we must be careful not to evaluate ##F_\text{buoyancy} \cdot v##. Instead we must evaluate ##F_\text{top} \cdot v## + ##F_\text{bottom} \cdot (v - v_{\text{compression}})##.
None of this alters the force balance that is present. It is just reconciling the energy balance.
[I assume that the air is negligibly massive compared to the glass so that we do not have to worry about the acceleration of the air]