MHB C[T] modules - Berrick and Keating Exercise 1.2.8 (c)

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Exercise Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading An Introduction to Rings and Modules With K-Theory in View by A.J. Berrick and M.E. Keating (B&K).

I need help with Exercise 1.2.8 (c) ...

Exercise 1.2.8 (c) reads as follows:View attachment 5097Now ... from this exercise we have that $$M \equiv \mathbb{C}^3$$

... and ...

$$A = \begin{pmatrix} 0&1&1 \\ 0&0&1 \\ 0&0&0 \end{pmatrix}$$
Now ... given a vector $$m \in M \equiv \mathbb{C}^3$$ and the matrix $$A$$ we have that the products $$Am, A^2 M , \ ... \ ...$$ are all elements of $$\mathbb{C}^3$$ ...

So ... following B&K Example 1.2.2 (iv) ... ... see below ... ... consider $$M \equiv \mathbb{C}^3$$ as a right module over the polynomial ring $$\mathbb{C} [T]$$ where

$$m f(T) = mf_0 + Am f_1 + \ ... \ ... \ A^r f_r $$

where

$$f(T) = f_0 + f_1 T + \ ... \ ... \ f_r T^r \in \mathbb{C} [T]
$$
Now, we are given:

$$L(v) \equiv$$ submodule of M generated by vThat is $$L(v) \equiv v f(T)$$ ...

and

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$ ...
BUT ... now how do we show $$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in v f(T)$$ for some choice of $$f$$ ...
Can someone please help ... ?
Further ... can someone show me how to find all $$v$$ with dim$$(L(v)) = 2$$?Hope someone can help ...

Peter
 
Physics news on Phys.org
Some preliminaries: let $z_1,z_2,z_3$ be any three arbitrary complex numbers.

If $v = \begin{bmatrix}z_1\\z_2\\z_3\end{bmatrix}$, then:

$Av = \begin{bmatrix}z_2 + z_3\\z_3\\0\end{bmatrix}$, and

$A^2v = \begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix}\begin{bmatrix}z_1\\z_2\\z_3\end{bmatrix} = \begin{bmatrix}z_3\\0\\0\end{bmatrix}$

and $A^kv = 0$ for all $k \geq 3$.

So if $f(T) = \sum\limits_{i = 0}^n f_iT^i$, then

$v \cdot f(T) = vf_0 + Avf_1 + A^2vf_2$ (all the higher terms are 0).

Now if $v = \begin{bmatrix}1\\0\\0\end{bmatrix}$, we see that $Av$ and $A^2v$ are both $0$, so that for this special $v$:

$v\cdot f(T) = vf_0$, in other words:

$L_0 = \left\{ \begin{bmatrix}a\\0\\0\end{bmatrix}: a \in \Bbb C\right\}$

In this case, the ring that is "actually" acting on $\Bbb C^n$ (which due to vector addition is an abelian group) is:

$\Bbb C[T]/(T^3)$, because $A$ is *nilpotent*, of nilpotency $3$ (the minimal polynomial of $A$ is $T^3$, since $A^3 = 0$, and no factor of $T^3$ annihilates $A$).

So we may as well only consider (to calculate $L(v)$) $f$ of the form: $f(T) = a + bT + cT^2$ with $a,b,c \in \Bbb C$.

Going back to our original $v$ (with arbitrary entries) we see that for such an $f$:

$v\cdot f(T) = va + Avb + A^2vc = \begin{bmatrix}az_1\\az_2\\az_3\end{bmatrix} + \begin{bmatrix}b(z_2+z_3)\\bz_3\\0\end{bmatrix} + \begin{bmatrix}cz_3\\0\\0\end{bmatrix}$

(since $\Bbb C$ is a field, I am using commutivity of the field multiplication to put the coefficients of the polynomial in front of the $z$'s)

$= \begin{bmatrix}az_1 + bz_2 + (b+c)z_3\\az_2+bz_3\\az_3\end{bmatrix}$

Can you take it from here?
 
Deveno said:
Some preliminaries: let $z_1,z_2,z_3$ be any three arbitrary complex numbers.

If $v = \begin{bmatrix}z_1\\z_2\\z_3\end{bmatrix}$, then:

$Av = \begin{bmatrix}z_2 + z_3\\z_3\\0\end{bmatrix}$, and

$A^2v = \begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix}\begin{bmatrix}z_1\\z_2\\z_3\end{bmatrix} = \begin{bmatrix}z_3\\0\\0\end{bmatrix}$

and $A^kv = 0$ for all $k \geq 3$.

So if $f(T) = \sum\limits_{i = 0}^n f_iT^i$, then

$v \cdot f(T) = vf_0 + Avf_1 + A^2vf_2$ (all the higher terms are 0).

Now if $v = \begin{bmatrix}1\\0\\0\end{bmatrix}$, we see that $Av$ and $A^2v$ are both $0$, so that for this special $v$:

$v\cdot f(T) = vf_0$, in other words:

$L_0 = \left\{ \begin{bmatrix}a\\0\\0\end{bmatrix}: a \in \Bbb C\right\}$

In this case, the ring that is "actually" acting on $\Bbb C^n$ (which due to vector addition is an abelian group) is:

$\Bbb C[T]/(T^3)$, because $A$ is *nilpotent*, of nilpotency $3$ (the minimal polynomial of $A$ is $T^3$, since $A^3 = 0$, and no factor of $T^3$ annihilates $A$).

So we may as well only consider (to calculate $L(v)$) $f$ of the form: $f(T) = a + bT + cT^2$ with $a,b,c \in \Bbb C$.

Going back to our original $v$ (with arbitrary entries) we see that for such an $f$:

$v\cdot f(T) = va + Avb + A^2vc = \begin{bmatrix}az_1\\az_2\\az_3\end{bmatrix} + \begin{bmatrix}b(z_2+z_3)\\bz_3\\0\end{bmatrix} + \begin{bmatrix}cz_3\\0\\0\end{bmatrix}$

(since $\Bbb C$ is a field, I am using commutivity of the field multiplication to put the coefficients of the polynomial in front of the $z$'s)

$= \begin{bmatrix}az_1 + bz_2 + (b+c)z_3\\az_2+bz_3\\az_3\end{bmatrix}$

Can you take it from here?

Thanks Deveno ... I think I understand your post ...

To outline the situation in the exercise ... ... we have the following:

$v = \begin{bmatrix}z_1\\z_2\\z_3\end{bmatrix}$ ... ... so $$v$$ is a vector of complex constants where $$z_1, z_2$$ and $$z_3$$ are (arbitrary) complex constants ...

We also have $L_0 = \left\{ \begin{bmatrix}k\\0\\0\end{bmatrix}: k \in \Bbb C\right\}$ where $$k$$ varies over all $$\mathbb{C}$$ ... ...

... and we have ...$f(T) = a + bT + cT^2$ with $a,b,c \in \Bbb C$ ... ... so $$a, b$$ and $$c$$ vary over all $$\mathbb{C}$$ Now we also have that

$$L(v) = v \cdot f(T) = \begin{bmatrix}az_1 + bz_2 + (b+c)z_3\\az_2+bz_3\\az_3\end{bmatrix} $$
Now, we have to show that $$L_0 \subseteq L(v)$$So consider $$\begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix} \in L_0$$ where $$m \in \mathbb{C}
$$We need to show that $$\begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix} \in L_0 \in L(v) = \begin{bmatrix}az_1 + bz_2 + (b+c)z_3\\az_2+bz_3\\az_3\end{bmatrix}$$Now, if $$a = b = 0$$ then

$$L(v) = \begin{pmatrix} (b + c) z_3 \\ 0 \\ 0 \end{pmatrix}$$so ... we see that if we set $$a = b = 0$$ and set $$c$$ such that $$m = c z_3$$ then $$\begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix} \in L_0$$ ...Thus if we choose $$a = b = 0$$ and choose $$c = m/z_3$$ then $$\begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix} \in L_0$$ ... So we have shown that $$L_0 \subseteq L(v)$$ ...
Is that correct? Indeed, does the above make sensse ... ?

Hope you can confirm it is correct ...

Peter
 
One small detail...why must $v \neq 0$?
 
Deveno said:
One small detail...why must $v \neq 0$?

Hi Deveno,

Yes ... omitted consideration of $$v$$ possibly being zero ...

so ... ... If $$v = \underline{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} $$Then we have $$L(v) = v \cdot f(T) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$and then it follows that ...$$\begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix} \notin L_0 $$ ... since $$m$$ can range over all $$\mathbb{C}$$ ... ... and so $$L_0$$ is not a subset of nor equal to $$L(v)$$ ...
Hope the above analysis is correct ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top