Calc 1 Antiderivative Practice: Solving Complex Integrals for Final Exam

frumdogg
Messages
18
Reaction score
0

Homework Statement



Hi everyone. My Calc 1 final exam is tomorrow and due to some weather related issues we were not able to cover all material for this quarter. With that said, my professor gave us a take home quiz on material that was unable to be covered. I have done by best, but I am getting hung up on an antiderivative problem.

Find the general antiderivative of:


f'(x) = 1-2x-4/\sqrt{x}+5/x-8/(1+x^2)+9/x^4

Homework Equations



Now due to having virtually no time to learn about antiderivatives (we lost a whole week due to a blizzard and instructor illness) I am really unsure where to go. Do I need to rewrite the problem on one line and then find the opposite of the derivative?

Thanks!
 
Physics news on Phys.org
Now due to having virtually no time to learn about antiderivatives (we lost a whole week due to a blizzard and instructor illness) I am really unsure where to go. Do I need to rewrite the problem on one line and then find the opposite of the derivative?

Thanks!

You take the integral of f'(x) to find the antiderivative. It will be in the form f(x) + C where f(x) is the antiderivative of f'(x).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top