(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

∫ from 0 to 1 of 1/sqrt(4-x^2) dx

I know from Wolfram Alpha that the answer should be π/6, and that the indefinite integral would be arcsin(x/2).

I see the connection between this and the antiderivative of arcsin, I'm just not sure how to handle the 4 rather than the 1--which technique to use.

2. Relevant equations

∫ 1/sqrt(1-x^2)dx is arcsin x

3. The attempt at a solution

Tried a few ways.

1st attempt was to rewrite as ∫ (4-x^2)^(-1/2)dx then reverse the power and chain rules to get sqrt(4-x^2)/2x from 0 to 1=sqrt(3)/2. Knew this was incorrect but trying to get my thoughts flowing.

2nd attempt was with integration by parts, with u=1/sqrt(4-x^2) and dv=dx...etc. This one ended up pretty ugly though, as vdu was worse than the original equation.

3rd attempt was with u-substitution; this one looked like it was going to work then took a bad turn. Let u=4-x^2, produces ∫ from 4 to 3 1/sqrt(u) --> -sqrt(u) from 4 to 3, then plugging back the 4-x^2 ended up undefined.

I was thinking of partial fractions but the sqrt throws me off. I'm studying for a placement exam and this is a question from a past exam in the class.

Thanks to everyone very much for your help!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Calc 2: Integral of 1/sqrt(4-x^2)

**Physics Forums | Science Articles, Homework Help, Discussion**